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FOREWORD

This study was carried out for NASA by Grumman’s Advanced Development Office
under the Shuttle Research and Technology Project (W, Ludwig, Manager; Dr. G.
DaForno, Aerothermo Mgr.). The contract number is NAS1-11818, March 1972 to
October 1973. Many of the results presented in this report were initially obtained un-
der an in-house study.

M. Rossi developed the numerical method and the DETRAD subroutine package.
Besides the authors’ efforts, contributions were also provided by A. Jameson, who ini-
tially suggested the numerical approach and was consultant to the study, and by G. Da-
Forno, who developed some points on the error amplification and the ‘yes-no’ chart,
obtained the computer time minimization data, and worked out the extension to temper-
ature-dependent properties and radiation. G. DaForno also assembled the results and
wrote portions of the report.
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LATERAL CONDUCTION EFFECTS ON
HEAT-TRANSFER DATA OBTAINED WITH
THE PHASE-CHANGE PAINT TECHNIQUE

By George Maise, Michael J. Rossi

Grumman Aerospace Corporation
SUMMARY

A computerized tool “CAPE” (Conduction Analysis Program using Eigenvalues) has
been developed to account for lateral heat conduction in wind tunnel models in the data
reduction of the phase-change paint technique. The tool also accounts for the effects of
finite thickness (thin wings) and surface curvature. A special reduction procedure using
just one time of melt is also possible on leading edges. A novel iterative numerical
scheme was used with discretized spatial coordinates but analytic integration in time to
solve the inverse conduction problem involved in the data reduction.

A ‘“yes-no”’ chart is provided which tells the test engineer when various corrections
are large enough so that CAPE should be used.

The accuracy of the phase-change paint technique in the presence of finite thickness
and lateral conduction is also investigated.
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NOMENCLATURE

Symbols

a = half width of “4op-hat’’ h distribution

ayy = elements of coefficient matrix A

A = coefficient matrix

Ay, = conduction area between elements i and j

Cp = specific heat

f; = departure of computed surface temperature at t,, from phase-change
temperature, Eqn. (11)

Gy = influence coefficient matrix, Eqn. (12) and (14)

= heat transfer coefficient

= modified heat transfer coefficient, Eqn. (2)
= enthalpy

= thermal conductivity; also number of surface elements
= modified thermal conductivity Eqn. (3)

= slab half thickness

= Mach number

= number of elements

= pressure

= Prandtl number

= heat flux

correction due to TD properties and € = 0
recovery factor

radius

distance along surface

time

temperature

velocity along body surface

injection velocity

matrix of eigenvectors of A

volume of element

= distance between elements (center to center)
= angle of attack; also thermal diffusivity

= emissivity

eigenvalue

= matrix of eigenvalues, also sweep angle
viscosity

density

at,/1%, nondimensional melting time

= wedge angle
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Symbols (cont.)
Subscripts

AW = adiabatic wall

bg = bhackground

CP = constant material properties
e = edge

E = effective

i = i-th element

init = initial, t=0

m = melting

T = row number of matrix

s = column number at matrix

sp = stagnation point

TD = temperature dependent

(o) = starting value (one-dimensional, semi-infinite)

1}

(n) n-th trial of h;

o] = stagnation point

1 = surface 1 of slab-like geometry
2 = surface 2 of slab-like geometry
[ ]

= free stream

Notation

V;
[Viy/ Voyl= [ u:l
Va1




INTRODUCTION

Subject

The subject of this study is the data reduction of the phase change paint technique,
a well known technique (ref. 1 & 2) for obtaining the heat transfer coefficient from wind
tunnel model tests, Briefly, the model of interest is covered with a paint that melts at
a known temperature and then at each point on the model surface the melting time is
measured, i.e., the.time elapsed from the instant the heat transfer coefficient becomes
steady. The heat transfer coefficients h are then deduced via a calculation of the model
temperatures with a step-like time history for the h’s,

Specifically, the situation studied here is that in which the spatial variations in the
heat loads imposed on the model are so large that lateral conduction in the model must
be accounted for to obtain accurate heat transfer coefficients. Another situation of the
same type occurs when lateral conduction is caused by the model geometry; for example,
lateral conduction is generated in a curved slab of variable thickness under spacially
constant heat loads. In both situations we place a restriction that it is still possible to
isolate a portion of the model where the problem is two dimensional, Two such cases
that occur commonly are (1) a slab (‘thin’ or ‘thick’) impinged upon by a shock, where
in the direction locally normal to the shock t‘race the problem can be considered two
dimensional; and (2) a leading edge (1. e.) of a model wing or fin, where along cuts nor-
mal to the 1.e. conduction is also essentially two-dimensional. Besides these two com-
monocecurrences, an arbitrary two-dimensional problem is also considered in this study
as indicated in fig, 1.

Two types of data reduction problems can be posed for the situation in fig, 1:

1) the distribution of the times of melt is given on the surface subjected to heat
loads and the corresponding h’s are to be derived -- this is the typical problem
in ref, 1 to 4, (Naturally the surfaces over which no data are given are to be
taken as adiabatic, or if at infinity, at the initial temperature throughout the
transient.)

2) the time of melt is given at one point on a leading edge and the entire h distri-
bution is to be derived -- this is a somewhat novel problem proposed by R. A.
Jones of the NASA Langley Research Center and suggested by the fact that on
leading edges of very small radius (0. 05 inches for the wing of a typical 1 ft,
shuttle orbiter model), it is too difficult to determine experimentally the prop-
agation of the melting line., At most, the minimum time of melt around the
1. e. can be determined. Approximately, this minimum melt time should occur
near the maximum heating point or near the stagnation point. Naturally, in
order to reduce phase-change paint data giving only t, at the stagnation point,
the following information is needed:

a) stagnation point location in the l.e. section considered, if a= 0.

b) pressure distribution around the l. e,
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¢) body entropy
d) T,, distribution around the l.e., and naturally
e) a formula for the heat transfer coefficient distribution.

This information has to be obtained theoretically. To be realistic it is also
imperative to use:

a) relatively simple formulae, preferably not involving table look-up or iter-
ations,

b) infinite-cylinder approximation for the 1. e. boundary layer,

Indeed, approximate formulae do exist that appear adequate for the task, How-
ever, this data reduction procedure has not yet been evaluated, as before this
study there was no tool for carrying out the calculations. In what follows, this
data reduction problem is referred to as ‘special problem for the 1. e,’

In both types of problems, the normal one and the special problem for the 1. e., it
is natural to include radiation from the model surface and model material properties
variable with temperature., These two effects are grouped together because they both
make the reduction non linear and therefore are handled in a straightforward manner
only by numerical methods. For the current model materials (Stycast, other epoxies,
etc.), both these effects are small. In particular the effects of temperature-dependent
(TD) have been found to be very small both in one-dimensional and two-dimensional
cases, Note that the TD solution should be compared to a constant property (CP) solu-
tion where the CP properties are properly chosen. The rational way is to evaluate k
and ¢, as the average of the values at T, and Ty, as indicated in fig. 2. Then, during
the time history from Ty,, and T, the properties are correct on the average. Of course,
at later times, when T> T,, the properties are locally less accurate, but to have an ef-
fect, this inaccuracy would have to influence regions far away where the paint melts
later. It is this influence that is minimal. For example, in a typical one-dimensional
case with a Stycast model there was only 0, 4% difference between hyp and hgp. Similar
results were found in two dimensional cases (calculations were done in direct problems
using AGTAP (ref. 5). In spite of the fact that they are small, that the k and ¢, varia-
tions with temperature are not always available and the fact that the properties in-
homogeneity can be more important, radiation and TD properties are here considered
for completeness.

Problem

Two specific problems are attacked in this study, i.e.:

i) the development of a numerical method and relative computer code for reducing
phase change paint data for the three geometries of fig, 1 and for both types of
experimental inputs mentioned above;




—BI!:I’Z’_ _J_o_ CONDUCTIVITY
SEC-FT'F SEC-M"K

-4 e
104x257 .
k (Tyni7! + K (Ty) 4 __BTU W
kay = 2 =204X107 speerop (126 ggoyog !
Sy
A
204128
A
4
-1.0 k ATy k(Tpy)
1.5
TiniT
300 350 ™ 400 ok
10 1 1 - 1 1 -
0 100 200 300 °©F
SPECIFIC HEAT
Cp (Tyni7) + Cp (Tpg)
_ Cp Ty +Cp (T T 3
Cpav = 5 =0214808: (089 % 103 o)
‘Bl\&"l_ 5F koK /
0.25 - 1
L 1.0x 103
PROPERTIES
MEASURED
0.20 4 IN A PREHEATED
STYCAST 2732
o - 0.75 SAMPLE
™
0.15-
T
o INIT
300 350 ™ 400 ok
0.10 TR L . - —
0 100 200 300 ©f

TEMPERATURE

FIGURE 2. THE SIMPLEST WAY OF CHOOSING SUITABLE AVERAGE

THERMAL PROPERTIES FOR THE MODEL MATERIAL



ii) the preparation of a ‘yes-no’ correction chart, that quickly tells the test engi-
neer when the lateral conduction corrections are large enough (say 10% on h) to
make reduction by ‘semi-infinite slab’ (ref. 1) or finite slab (ref. 3, 4) too in-
accurate and therefore the use of the computer code above necessary.

The chart should, of course, be simple, Moreover, the computerized data reduc-
tion should allow for variable material properties and radiation. Naturally, the code
itself should be easy and quick to use, especially as far as geometry input (e.g., grid
lay-out, elements selection, conduction paths calculations).

Target Run Times

To produce a practical computer tool for the data reduction in the presence of (two-
dimensional) lateral conduction, we set a maximum run time on the CDC 6600 on the
order of 6 minutes for a typical slab case with h obtained to an accuracy around some
1 to 2% (which is an adequate value to impose on the numerical method, as it is an order
of magnitude smaller than the absolute accuracy of the experimental h).

Prospects for Data Reduction in
Three-Dimensional Geometries

Currently, the maximum service temperature of model materials such as Stycast
imposes various limitations on the test conditions the model can be tested at, the max-
imum run time of the test and the number of times a model can be used. Metal, e.g.,
stainless steel models would eliminate these drawbacks of the epoxy models, at the
price (among other things) of a much larger conductivity and therefore fully three-di-
mensional lateral conduction. Reducing data in the presence of 3D lateral conduction
effects would require in the numerical method a large number of elements to describe
the model (or a 3D portion of it), While not a part of this study, such a prospective
extension of the numerical method should be kept in mind. As a target, one may per-
haps put the maximum run time, on the CDC 6600, at 30’, Of course, the feasibility
and practicality of such an elaborated data reduction would have to be judged on many
more counts than the mere low computer time,




NUMERICAL METHOD FOR THE LATERAL CONDUCTION

INVERSE PROBLEM

Possible Approaches

The most obvious approaches that could be taken, are finite difference methods
(implicit or explicit) or finite element methods for the space variables and time, or a
mixture of finite element for the space variable and finite differences for time. These
are the methods used in the current computer tools for direct heat conduction problems,
typically SINDA (ref, 6), AGTAP (ref. 5), etc. Along these lines the one-dimensional
inverse problem has been also solved successfully (ref. 4.)

Unfortunately, none of these conventional approaches (finite difference or finite ele-
ment, implicit or explicit) seems to offer much hope for a practical tool for two-dimen-
sional inverse problems because of the extremely large machine times required. The
basic reason is that, in iterating on the h;, once a set of h; is guessed, one needs influ-
ence coefficients of the type 07T,/9h; and to obtain these coefficients it is necessary to
calculate a very large number of direct problems. To try to put the problem on quanti-
tative, even if approximate, terms, figure 3 shows some comparisons of running times
for explicit and implicit methods coupled with numerically determined influence coeffi-
cients (Newton’s method). For the purpose of comparison, it was assumed that all
methods converge in three iterations, which tends to put the method developed below at
a disadvantage. *

The explicit method suffers from the fact that for physically small elements the
critical time step beomces very small, Furthermore, if stainless steel models are to
be considered, the critical time step is further reduced by a factor of 12 over that of
Stycast with the corresponding increase in computer time, Thus, the interesting con-
clusion follows, from fig, 3, that the explicit method has to be ruled out.

*The curves in fig. 3 were determined as follows. For the explicit method, we ran a
121-element Stycast problem (heated on one side) in the direct mode with a thermal
analyzer (ref. 5). To do the corresponding inverse problem with the thermal analyzer,
the influence coefficients would be determined by perturbing all the h,’s in turn and re-
running the program. This would lead to a total running times of 21 minutes. The in-
dicated proportionality of computer time with n’ (n number of elements) would result if
the number of surface elements to the total number of elements were kept in the ratio
of 1 to 11. For the implicit method we timed one of our very efficient finite-element
structural mechanics programs which resembles (mathematically) the implicit heat
transfer problem. To do the corresponding inverse problem the same arguments that
were used for the explicit method apply. A variation of computer time with n® was as-
sumed because the implicit method involves matrix operations. Finally, for the meth-
od developed here, fig. 3 presents running times actually clocked for an early, non-
optimized version of both method and code.
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Computer time with the implicit method depends directly on the time step that is
chosen. Figure 3 assumes that for accurate computations 50 time steps are required.
The computer time could, however, be lowered at the sacrifice of accuracy in the time
integration, However, the basic method does not possess the potential for significant
reductions in computer time, and therefore, it is very doubtful that it could ever handle
three-dimensional geometries within the 30’ target time.

Method Developed Here

In order to deal with the difficulties just mentioned which are characteristic of the
problem at hand, a different idea (suggested in this context by A. Jameson) was devel-
oped as follows,

Imagine to discretize as usual the structure, in lumps for example in the spirit of
the finite element methods, Write the ordinary differential equation governing the tem-
perature history in each element. The idea is now not to discretize the time variable
and carry out the integration in time numerically, but instead to leave this variable con-
tinuous and carry out the integration analytically. The method therefore belongs to the
class of the semi-descretized variables or the hybrid analytical-numerical methods.
Hybrid methods have not yet received much attention, even though in the literature a
few cases have been reported. Their potential seems to lie in their ability to_incorpo-
rate the best aspects of both numerical and analytical methods. In this essential aspect
the method developed here differs from the usual finite-element methods used in heat
conduction,

The great advantage in not discretizing the time emerges when the inverse problems
of phase change paint data are {0 be solved. These inverse problems are described by
multipoint boundary value problems in time. Since the integration here is done analyti-
cally, the result is an explicit expression for the temperatures of all elements as func-
tions of time and all the heat transfer coefficients, i.e.:

T1=T1 (t, hi, h2. . -hk)

When the t,, ; and T, are given, this equation has to be solved iteratively for the hy’s.
An efficient iteration requires the influence coefficients G;;=8T,;/8h,. Two approaches
are avilable to obtain these influence coefficients. First, since there is an analytical
expression for Ty, the G;; can be obtained directly by differentiating this expression
with respect to all the h;’s. With any numerical scheme that discretizes time, the time
integration must be repeated k times (k=number of surface elements) to obtain these in-
fluence coefficients. In other words, the usual methods, whether implicit or explicit,
require k+1 integrations in time, while our scheme needs just one. As the number of
points increases and also the melt times become larger (driven by the quest for higher
accuracy in the data reduction, larger model conductivity and higher model service tem-
peratures), k integrations in time are bound to cost, in terms of computer time and stor-




age, more than the calculation of an explicit expression for G;;. The other approach is
to calculate the Gyy, from the exact ‘analytical’ or ‘infinitesimal’ expression, from the
approximate finite-difference expression:

=§E le(hphg,hj'FAhj-. . 'hk) _Ti(hihz.. .hk)

11 =%, ah,

with a small but finite &h;. This requires one extra set of eigenvalue calculations per
surface point. Therefore in this case we trade the k+ 1 time history calculations of the
conventional methods with k+1 eigenvalue calculations (k of which have only one h per-~
turbed).

In both cases, then, this unconventional analytical-numerical method permits the
substitution of the numerical integration in time by one or more eigenvalue calculations
and opens the possibility of taking advantage of the considerable amount of work done
recently on fast eigenvalue calculations in the areas of aircraft control theory and struc-
tural analysis*. This gives latitude for considerable advances in computer time, stor-
age and size of problems handled. Such latitude is not evident in the typical heat con-~
duction methods.

Naturally, all this needs to be put on a quantitative basis. Figure 3 anticipates
some indications of the machine time requirements for the method developed here. One
point to be kept in mind is that these times are for a non-optimized version of method
and code and that the method itself has considerable potential for time reduction.,

Clearly, this hybrid analytical-numerical method can be carried out within the
framework of finite element approaches or within the framework of finite difference ap-
proaches as far as the space variables are concerned. For the problem at hand, there.
may be only minor differences between these two approaches in the final discretized
equations, We patterned our space discretization after the simplest version of the finite
element approach, namely uniform distribution of each quantity within each element, in
the belief that what is most important for large improvements in the numerics is an
imaginative approach on the broad issues rather than sophistication in detailed matters,
However, one point of the spatial discretization has been paid attention to, namely
boundary elements are treated in a (very simple) way that assures-~within the uniform
distribution assumption-- maximum accuracy in imposing the boundary conditions, as
will be seen below.

*The method developed here was transplanted from control theory, but most of the rou-
tines and eigenvalue-eigenvectors numerics originate from structural analysis.




Equations for the Basic Case

The key equations in our method are now presented. We give in this section the
basic case of variable Ty, no radiation, times of melt that are all given.

After the model’s structure, or more likely, a portion of it is suitably subdivided
into n elements, the temperature response of each element i can be represented by

aT A
pC, AV, a1=hiAi<T,,“,,,i—Ti)+j‘£.ﬂk—A—X*i; (T,;—T)y) 1)

(h; term suppressed for interior elements; j elements adjacent to i share with i the in-
finite area A;;). The symbols are defined in the nomenclature. For simplicity, re-
define new coefficients,

HizhiAi (2)

= kA

[Pkl ¥ 3)
ij AX“

The equation can be rearranged to read

dT; - = = Iy
pCy AV —==— <h1+§iku)Ti+ElkijTj‘“hiTAw,i @

These equations constitute a system of n first-order linear differential equations with
constant coefficients. Because of the variable T,y, these equations are inhomogeneous.
Writing (4) in vector notation

dT
ME =BT +F, T(0)=Tynt

or alternatively
dT

el M2 AMY2 T+ M1 F (5)

T(0) =Tyn¢

where M is the diagonal matrix made up with the pC, AV;, A=M-V2 BM-V2 is a symmet-
ric matrix where

by ==y + Z k), hy=0 if i is interior element (6)

bys=ky @

10




and F is a constant vector

hyTaw,1
F= HiT.AVI,l

BTawk (8)

The solution to the initial value problem (5) is written in the usual fashion as
T =T, +M2vertyIMY2(T, . —T.) ©)
Where the t —~ temperature T, is the solution of the RHS of (5) set equal to zero:
M-V2AMY?T .+ M-1F=0 (9a)

and where A is a diagonal matrix formed with the eigenvalues A; of the matrix A, and V
is the matrix of eigenvectors of matrix A, VTis transposed of V.t Thus, once the ei-
genvalues and eigenvectors are determined with one of the standard subroutines, the
temperature of any element at any time t is readily evaluated by eq. (9). For the prob-
lem at hand, only the temperatures of surface elements at t,,, ; are of interest.

Equation (9) solves the direct problem, since it gives the temperature distribution
when Ty, and Hi are given, The problem of interest is really one of determining the
parameters h, from a partial knowledge of the direct solution (T =Ty, ; at t=t, ; foreach
surface element)., Therefore, the solution of the inverse problem is given by equations
(9a) and (10).

Tm,i - 6'{ M-1/2 Vehtm,i VTMI/Z(Tinit —~T,)+Ta }

A, Vand T, are functions of H, (10)

Here &} is the i-th row of the unit matrix of n elements, Equation (10) is a system of
transcendental equations in the unknown hy. By solving it one determines h,,

In order to solve eq. (10), an iteration inthe H, is used. As starting values for the
iteration, the h, are first computed using the one-dimensional semi-infinite slab theory
(ref. 7). The temperature of the surface elements corresponding to the given tm,1 are
computed by eq. (9). This is of course the RHS of eq. (10). These temperatures should
all equal T,,,. Considering h a vector parameter, the errors in the temperature are thus

fi(h) =Ty~ 6] Tlhy, o) (11)

To obtain new values for the ﬁ,’s, use is made of Newton’s method of iteration. It
is necessary to evaluate the influence coefficients Gy;, (G in the matrix form), where

TIf TAW is constant in space, T,=T,yis also constant. If H=0, T = (2 mTypge )/

(E my ) is constant which of course, for T,,, constant in space, becomes Typyt the same
constant These results show that the discrete model is consistent.

11




oy 5T Tlty,y) 12)

G197~ 8n, “% e,

Since the T(t, ;) are known, the derivatives, i.e., the Gy; can be calculated formal~
ly. The result is

Gyy =067 MY? VImj! Qqy(ty,, ) VIMY 2 (T — Too) + (21001 - DA-TVIMY2A (T = To)] (13)

( e"'rtm IS I elstm ol
VirVss -
Quee = Ae—Ag
irs
Vir Vistm,1 e’rtm, 1 Ar=2Ag

Ar# A

i
6‘= [0---00100...0]

H
Ajj:: Qeee o() esee()
0e2e(Q10¢°°-0 7
Qesee () eees()

Although the expression for G,; appears to be quite complicated, it is to be noted that
V and Ay are already available from the calculation of the T(t,, ;) (the RHS of eq. (10)),

and the multiplication of terms in eq. (13) can be performed in such a way that matrix-
by-matrix multiplication is avoided.

There is another possibility for calculating the G;;. Rather than the infinitesimal
expression (13), one could use the approximate finite-difference expression:

_ eTl gTiﬁl’Hz' e .Ej +Ah’. . -Ek) _T1<ng EZ- see 'Ek) (14)
1§ 5=
dhy Ah,

with a small but finite Ahy, This requires the evaluation of one extra set of eigenvalues
and eigenvectors (for the perturbed sets of hy) for each i and the corresponding T atthe
time of melt t,, ;. Naturally there is no point in using a central difference that will re-
quire two extra sets of eigenvalues and eigenvectors. Later on, we will discuss the
question of which of the expression (13) or (14) for the G;; is most convenient.

Once, however, the G, are determined during each H, in the following way.
For a change §h in the parameter vector, eq. (12) gives
6f=Goh +0llsh Ii2 @15)

To make the errors f vanish at the next trial £ should equal —f from the previous trial.
Ignoring the higher order terms, eq. (15) can be solved for the required change in h:

sh=-G1f (16)
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To carry out this step requires an inversion of the G matrix. It is to be noted that this
matrix is typically much smaller (it is equal to the number of surface elements onwhich
h is unknown) than the A matrix. The updated set of H, can be formed as

655(1) - Hj(O) + 651 av)

The above procedure is repeated until eq. (10) is satisfied. When this occurs, the de-
sired hy’s have been determined.

As will be shown below, the iteration scheme just described is very powerful. For
example, convergence to 0.1% error is generally achieved after three to four iterations,
for the most severe case, when the times of melt at all surface points are given,

Temperature Dependent Properties and Radiation

Radiation and TD properties* can be simply included in the numerical method that
we have developed. This is not quite obvious at first sight since the method depends
upon the analytical solution for the ordinary differential equations and we are able to
write the analytical solution only for problems linear in time. The usual radiation for-
mulae or material properties variable with temperature make the problem non-linear.

The analysis can be extended to handle non-linearity in a manner that preservesthe
power of the numerical method. The extension amzunts to “lag behind” in the non-lin-
ear terms so0 as to build up the exact solution through a succession of iterates, each of
which is linear., The iterates are not new ones, rather the ones already necessary for
hy. The key point is that the analytical time integration for each element is maintained.

With radiation and variable material properties, the starting equation replacing
1) is:

dT
pCphy (THAV, —&5 hA (Tpy—T;) — o€, (T{— T} G 1) A
Agy
+ 2k (T, Ty) —=— (T, =T, (18)
1 ijvti ’AX“ b i

with the same convention as in (1) to suppress the first two terms in the RHS for interior
elements and the same conventions for j.

*Naturally, radiation with arbitrary emissivity and background temperature for each
surface; and also arbitrary C, (T) and k (T), supplied, for example, in the usual tabu-
lar form. p is taken as constant,
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Using constant but suitable values for ¢, and k
c =Cp(Tln1t) +Cp(Tm)
P 2

K(Tyq0) +k(T,)
2

k=

the equation is now recast as

‘,AVidt =hyA, (Tawi-Ti)+z kAX“ (Ty - T,)
+Q, (T, (), T, (t))

Q= _Uei(TLil_ T%G,i)Ai
kyy _ Ay
+§‘ ( ) AX,] (Ty - Ty)

Chl - dT;
+fi-2 AV, 1
< 5, ) PO\

Naturally Q; summarizes all the non-linearity in time and is made up of three effects as

is clear from inspection of (20),

(19)

(20)

Proceeding as before, equation (5), (9), (10) and (13) are now replaced by (consid-

ering Q a known function and maintaining the same definition of T,):

dT

T M2 AMY T+M P 4Q

t
T=M"12 Vet vTM2(T, , — T.) +f0 M-172 yeA -1 yT\12Q (1) dT + T,

Ty, =07 M2 Vertmt yIMV2(T )\ — T.)
+ f(‘)tm,i M-172 yeh (tm,1-7) yT p1/2 Q (TdT+ T,

G“ =6;I'[NI-1/2 VQj (tm,l) VT M1/2 (Tinit - Tw)
+MA2VQy (ty,) VIM2Q, (ty,,)

PMA2VH () v 2% ) ]
oh,
H.,=0 r=s

matrix H -
etm,i _1
Hyp==—5—— r=s
r
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In these equations all the first terms are clearly those obtained in the absence of radia-
tion and material properties variation. In particular, the equation solved for the in-
verse problem looks simply

Tm,i - (Tm,i)No RAD, + fotm,iM-UZ Ve Altm, i) VT MUZQ‘(T)dT (10%%)
cP

This equation that gives the H, cannot be solved alone any more, but must be solved to-
gether with the integral equation (9’) that gives the T;({). However, recalling that radia-
tion and TD properties are not dominant effects, Q is relatively small and therefore an
iteration in Q should rapidly converge. Therefore, in each H, iteration, Q{) can be
taken approximately as the value computed a posteriori from the temperatures of the
previous H, iterate. In the first iteration, Q(t)=0. Of course, as H, converge to the
exact values, so do the Q(t)s.

In this way linearity is maintained in each h; iterate and the calculation method re-
mains as indicated in the previous section. No new iteration for Q is needed. The only
addition is the calculation of Q for equation (10’’) and for this temperature history up to
t, is needed from equation (9’).

The integral in (10’’) is discretized in the most straightforward fashion
1, imax AT
T,y (Tylquot X ?[M'm Ve ttm, 1-r1:0VT M12Q, (74,4)
1

+ M- /2yehtm, 10D yTML/2Q, ()] 21)
t
A'rz—m’_.i__
]ma.x -1
TI = (l _ l)AT

lnae arbitrary

Equation (20) gives Q, (1) via the T(r) from equation (9’), which is discretized just as
(21),

No great sophistication is needed in the number of time intervals l,,, nor in the
discretization of the integral near =0 since the contribution of @ is altogether small,

In the same spirit, when using the analytical expression for the Gy, we can retain
(13) instead of (13') even with radiation and TD properties. Experience with this meth-
od has been that only approximate values of the G;; are needed to drive the H, iterates -
to the solution in a few of iterations, Therefore, there is no need to add the small ra-
diation correction to the Gy whose only function is to drive the iteration.

Numerical results show that under normal conditions, radiation and TD properties
do not affect the number of iterations and have very small effect on Gy;. However, the
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extra calculations do cause an increase of computer time by a factor of about 2 for radi-
ation and 3 for radiation plus TD properties. Naturally a method that integrates numer-
ically in time would entail a small increase due to these two effects. However, since
the effects appear to give a maximum change of the order of 1% in hy for current situa-
tions, the present method allows to take advantage, for the majority of the applications,
of the fastest version of the method, This advantage does not exist in the method re-
quiring the numerical integration in time,
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Geometry Discretization and Calculation Of

Capacitances and Conductances

In this section we document the way in which the three types of geometries of in-

terest (fig. 1) are discretized into elements and how capacitances and conductances
are calculated. The calculations (grid lay—-out and capacitances) are done in a stan-
dard way since they are automatized in the computer code so that the tedious labor of
input preparation typical of multi-dimensional conduction codes is mostly eliminated.

and

and

The grid lay-out for the slab, the 1,e. and the arbitrary four-sided two-dimensional
geometry is illustrated schematically in figures 4, 5, and 6 respectively.

Some points to be noted are:

a)

b)

Control points. The temperature points are taken to be in the middle of the
elements except for the surface elements, where the temperature points are
taken on the surface. This procedure results in greater accuracy in surface
temperature calculations, which is particularly important in phase-change
paint applications. It eliminates the needs of extra-fine resolution near the
surface.

Slab thermal capacitances and conductances are calculated as follows (see fig.
4):

Cy=pcyAx Ay, (22)

Ky yq kT
LI TR LAy, +Ayy)

c)

Ax;
(23)

Leading Edge. Fig. 5 represents a geometry in a plane normal to the 1. e.
The cylindrical portion of the geometry is divided into elements by concentric
circles and by rays. The wedge portion is divided into rectangular elements
except near the centerline where the elements are trapezoidal. Conductances
such as E-H, etc,, see fig. 5, are taken to be zeros since these elements
meet at a point. In the nose region conductances between elements are com-
puted by the usual logarithmic relationships. For example:

- r
Kpop=Sln=S (24)

I;A'B = kﬁ ln'l "x'.x

B Ta

Ig (25)
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Ax, Ay ARBITRARY
NUMBER OF ELEMENTS IN BOTH DIRECTIONS ARBITRARY
2 EXAMPLES SHOWN WITH ACTUAL DIMENSIONS
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(b) FINITE SLAB, 88 ELEMENTS

FIGURE 4. GRID LAYOUT FOR SLABS
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Ax, Ar ARBITRARY
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r AND x DIRECTIONS AND ALSO

IN THE CIRCULAR PORTION
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FIGURE 5. GRID LAYOUT FOR LEADING EDGES
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EACH CORNER
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THESE
LINES
NEED NOT

BE STRAIGHT

FIGURE 6. GRID LAYOUT FOR ARBITRARY GEOMETRIES.
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d)

One complication arises near the center of the circle. The conductance he-
tween adjacent elements such as F and G becomes infinite according to the
above relationship, To circumvent this problem a small “hole’” equal to 0. 01
rcap 18 assumed for the center. The conductances between rectangular ele-
ments are computed in the same way as for the slab. For the conductances be-
tween dissimilar elements (e.g., I-Jin fig. 5) are computed in two parts and
added according to the conventional rules.

Arbitrary Four-sided Geometry. The geometry contour is assumed to be
given pointwise. The grid lay-out is also specified pointwise as indicated in
fig. 6. To compute by hand the conductances hetween these elements in this
case would be an extremely tedious and time-consuming task. This task can
be done automatically, when the coordinates (x, y) of the corners of the ele~
ments are given. To compute the conductances between arbitrary quadrilater-
al elements, use is made of the analysis given by Dusinberre (ref. 8). Dusin-
berre presents the relationships for computing conductances between triangu-
lar elements, Since all quadrilaterals can be subdivided into triangles, these
relationships carry over to the problem at hand. Basically, two situations
exist as shown in fig. 6. If the obtuse angles of the quadrilateral are on oppo-
site corners, the resolution into acute triangles is accomplished by passing

a diagonal through these corners (case 1). If the obtuse angles are adjacent,
the quadrilateral must be divided into three triangles (case 2). The resulting
conductances are given by the following equations:

case 1:
- 1
kiin=7"1 (26)
E TRy
where
ks =% k(cotDAC +cotADC +cotABC +cotACB) (27)
and
kg = 4 k(cotCBF +cotBCF +cot BEF +cotBFE) (28)
case 2:
R, oo (30)
j’j+1 -1_+'_1_
kg kp
and

Ec =% kicotBAG +cotAGB +cotCDG +cotDGC +cotBCG +CBG]
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kp =3 k[cotEBH +cotBHE +cotFCH +cotCHF +cotHEF +cotHFE] (31)

The capacitance of the arbitrary quadrilateral element (for example i +1 in
the insert of figure 6) is given by

Chi = %PCD[(XG - Xc)(Y}{ - YB) - (Xﬂ - XB) (YG - yc) 1 (32)

The code contains the logic to examine the element and decide on the appropriate sub-
division into triangles. The code then proceeds to compute the capacitances and con-
ductances as illustrated above.

Special Problem For The Leading Edge

As mentioned in the introduction, in this type of reduction problem one obtains
from the model test just one melt time, the minimum melt time around the 1. e., while
the h distribution is obtained from theory.

The data reduction problem then is simplified to one of determining only one un-
known, i.e., the magnitude of h at the stagnation point hg. In performing the heat con-
duction analysis, the complete geometry must, of course, be treated, however, the
iteration to convergence is performed on only hy,. The given time of melt is most con-
veniently chosen at the stagnation point in the neighborhood of which melting is expected
to occur first.

The problem is solved as usual in a plane normal to the leading edge. The infinite-
cylinder approximation is used. Approximations that are also accepted in order to ob-
tain simple formulae are: perfect gas with an effective ¥, constant Prandtl number,
pT and ‘cold walls’. The boundary layer is taken as laminar on the entire 1. e.

The equation used for h/h; is the Lees’ formula (see for example ref. 9; assump-~
tions are cold wall and poT):

h K (33)
h - U,
v ),
where (the meaning of the symbols may be clarified by reference to figure 7):
P Y
Pp2 Uw
(34)

F=
S 1/2
zU_p_ &ds]
y P02 U

Of course this equation is written in a plane normal to the 1, e.

To evaluate F quantitatively, one needs the distribution of pressure and velocity
around the leading edge, and the position of the stagnation point. The pressure dis-
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tribution is evaluated with the modified Newtonian law (between the stagnation and the
two sonic points) joined smoothly to a Prandtl-Meyer expansion downstream of the sonic
points. The modified Newtonian relation for the pressure coefficient is

Cp=Cposin’e (35)

Expressing C, in terms of pressure, the pressure is given explicitly by

p= pw[@‘l? - 1) sin’¢p +1] (36)

where py, is the pressure behind the normal shock. From (36) the velocity at the edge
of the boundary layer u, follows by Bernoulli’s equation:

_ 2y Pﬂ[l— P 7-1/2] 1/2 -
te {'Y—l Po2 Po2 G7)

These expressions are used as long as u, remains subsonic (see fig. 7). Beyond the
sonic points the Prandtl-Meyer relations are used. The wall turning is related to the
Prandtl-Meyer function in a very simple fashion. For expanding flow one has

vo=vy +| ¢y — 1] (38)
where v is a unique function of Mach number
Y+l fv—1.2 oy -t for2
- -1) = - 39
v(M) \/_y_ltan\/_w_l(M 1) ~tan"M" -1 (39)

Thus as one follows around the contour of the leading edge, v is given by eq. (38).
From v the Mach number is determined by a simple trial and error application on eq.
(39). If one again assumes isentropic flow, all other flow properties e.g., p, uare

readily related to their corresponding values at sonic conditions through the Mach num-
ber,

After p and u, are determined around the body, F is evaluated by humerical inte-
gration. One can then substitute F into eq. (33), divide by v (du,/ds), and obtain the
desired ratio of heat transfer coefficients. It is actually not necessary to evaluate
(duy/ds)y. Since h/hy, must equal 1,0 at the stagnation point, v (du./ds), is simply equal
to F at the stagnation point.

For the stagnation point position, the Newtonian rule is used, namely, that the
stagnation point is where the “free-stream® velocity (i.e., the velocity vector in the
plane normal to the 1.e.) intersects the 1, e. contour at 90°.

The distribution of the adiabatic wall temperature is also required. It is deter-
mined by the simple approximate relationship
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B — Taw— Te
Pr —ﬁ (40)

or
Taw=V Pr(Ty—Tg) +T, (41)
where Pr is given.

In conclusion, if one wishes to make use of this special reduction procedure for
l.e.’s, the additional input information needed consists of the free stream M., eff,”s Pes,
Ty, Pr, the gas constant R and the angle of attack. These quantities are to be under-
stood given in a plane normal to the 1. e.

The many approximations embodied in the formulae chosen raise the question of
whether or not these formulae are adequate, even though it is almost unavoidable to
keep the complexity of the problem within reasonable bounds. It is worthwhile there-
fore to state briefly how accurate the approximations are:

e Stagnation point and point of maximum heating can differ considerably so that
the position of earliest melt need not be the correct position to start the in-
tegrals in equation 34. Angular displacement can be of the order of 20 to 30°
on a swept leading edge at higher o (for example, ref. 10). Unfortunately, the
the simple Newtonian rule for the stagnation point position is not accurate in
such cases because the effective angle of attack

tanag=tana/cosA (42)

is very high (for example for the wing 1. e. of the NASA MSC 040A orbiter con-
figuration during reentry, ag~50°). Angular errors of the Newtonian formula
can easily be 30° to 50° (ref. 10), We are not aware of a more accurate for-
mula for determining the stagnation point position on leading edges.

e None of a dozen or so approximate methods for obtaining the pressure distribu-
tion around the 1. e, is accurate in the shoulder region, including the typical,
not-too~complex modified Newtonian plus Prandtl-Meyer. Typically C, can be

in error by 50% in the shoulder region. Pressure gradients cannot be used at
all,

e When comparing with exact inviscid calculations (obtained with computer code
of ref. 11), the entropy on the body is found to be well predicted by normal-
shock entropy with effective free-stream Mach number. For a planar wing
with dihedral ¢, sweep A, angle of attack «

Mg =MgcosAg

SsinAg=sinAcosa +sina cosA sing
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Refinements on these items should not he included in the method at this point. The
approximations involved have to be kept in mind, but a realistic first step is to use for-
mulae such as (33) and (41) carefully avoiding explicit pressure gradients. This will
already represent a considerable step permitting the evaluation of this special data re-
duction method.

As far as the numerical method used to solve the equations, there are only minor
modifications to the G;; equations (eq. (13) and (14)) and to equation (16) for the updates of
the hy;. Since there is only one h;, we have instead of (14)

8T, Ty(hy+Ah, hy +Ah..... h,+Ahy) = Tohy, hy...hy
Gw e o~
8h0 Aho
h.
Ahy ==L Ahg (14")
ho
Similarly (11) and (16) are replaced hy:
fo =Ty — Tolty, o) (11’’)
— h; 1
Sh,=—= — ¢ (16")

Minimization of Computer Time
Areas for Computer Time Minimization

In writing the equations of the method, some alternatives were left open in the way
the calculation is carried out. The machine time required by each alternative will now
be investigated and the most attractive alternative selected. Specifically, the areas in
which there is still some freedom left are:

a) whether to calculate all the eigenvalues of the A matrix (see for example equa-
tion (10)) as opposed to calculate only the dominant ones and therefore save
time in the eigenvalue-eigenvector (E&E) calculation;

bh) whether to calculate all the terms in an equation such as (10) or limit the cal-
culations to only the eMt terms containing a dominant eigenvalue; here time is
saved in the matrix operation to calculate the temperatures and the G ;

¢) what method to use for calculating the E&E’s;

d) finally, how to calculate the G;;, whether analytically through the explicit for-
mula (13) or numerically through (14).

A few comments will illustrate these items.

As far as items a) and b) are concerned, this matrix reduction technique has been
used successfully in vibration analyses (e.g., ref. 12, 13and 14) where problems in-
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volving several thousand elements are common. When applied to heat conduction, the
idea amounts to representing the transient thermal behavior of the interior elements
by a smaller number of “generalized” coordinates. For example, the temperature of
each element i is normally written as the sum

i,n nt
Ti(t)=§P”ei

The number of eigenvalues and, consequently, the number of terms to be added is exact-
ly equal to the number of elements. But many of the terms in the sum are so small that
they could be neglected without loss of accuracy in T;. Table I gives for a typical case
the error found by keeping only the largest terms. Clearly, sufficiently accurate values
of T; can be obtained by reducing the A matrix even by a factor of 10. The deletion of
the remaining terms may thus result in a significant savings of computer time, partly
because the subdominant eigenvalues need not be computed (item a) and partly because
all the subsequent calculations involving the subdominant eigenvalues need not be carried
out (item b). One problem, however, to be resolved with item b) is the effect of using
only the dominant eigenvalues in obtaining the influence coefficients G;;=98T;/8h; when
these coefficients are calculated through their analytical expression (13). Because of
the differential nature of this expression is it not obvious that it will not depend in an
essential way on the complete set of E&E’s.

As far as item c) is concerned, standard and efficient methods exist for obtaining
the E&E’s (all or just a given number of diminant ones) of a real symmetric matrix,
such as A, But of course, there exists the possibility of using methods that are partic-
ularly efficient for the special characteristics of the matrix A, which is sparsé and
banded. Another point to be kept in mind in choosing a method is that the eigenvalue
calculations are repeated for each matrix A, i.e., each time the matrix A is changed
during the iterations in the h;. Therefore, iteration methods for the E&E’s of eachmay
be very attractive because there are already available good starting approximations for
the E&E’s, those of the previous A iterate. Of course, it is not within the scope of this
study to embark in the development of new methods for E&E’s calculations; the aim is
rather to exploit the best state of the art.

Finally, as far as item d), the question of how to obtain the G;;, whether through
(13) or (14), depends not only upon which of the two equations takes up more time, but
also whether or not equation (13) requires all the E & E’s thereby affecting the best pro-
cedure selected under items a) and b).

Items a) and d) were investigated through experimentation via a pilot computer
code. * The problems taken as typical in the experimentation are: (i) a slab heated
on two sides with constant adiabatic wall temperature and the special 1.e. problem, (ii)
with constant material properties and negligible radiation, and (iii) with a total number
of elements of the order of 100. These are the most common current problems towhich
the method is intended and for which minimum computer time should be assured.

*The code which contained just a few double precision operations was exercised on the
IBM 370/165. The results were spot-checked on a single precision code on the CDC
6400 with substantially the same results.
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TABLE I. TYPICAL ERRORS INCURRED IN NEGLECTING SUBDOMINANT EIGENVALUES
TERMS IN THE TEMPERATURES CALCULATIONS

NUMBER OF DOMINANT EIGENVALUES + EIGENVECTORS ng ——

2 3 4 5 10 20 30 |MAXng =108

Ty-T; ATP

OR -143.3 | -158.7 | -159.0 |-159.0 | -169.1 | -159.1 | -159.1 -159.0

(°K) {-79.6) | (-88.2) | (-88.4) [(-88.4) | (-88.5) | (-88.5) | (-88.5) {-88.4)
T
TEMPERATURE
AT P AFTER
1 ITERATION
n=9X12=108

v P
Ty - 350°F STYCAST
{450°K)

b F fow
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Baseline Method and Its Computer Time Breakdown

In order to direct attention to the most time-consuming steps of the calculations, a
baseline method is first selected and timed to serve as a reference. The baseline meth-
od consists of standard procedures for the items a) to d) above, namely:

a) all the E&E’s of each A matrix are calculated

b) all terms eM' are used in all matrix operations

¢) the complete set of E&E’s are obtained via a typical modern transformation
method for real symmetric matgices, i.e., an n-step reduction to tri-diagonal
form followed by the convergent Q-R iteration (ref. 15). Standard routines are
used (ref. 16).

d) The analytical expression, eq. (13) is used for the Gy;.

Table II gives for the baseline method the breakdown of computer time for each of
the four key steps which constitute one h iteration. This table reflects the medium-
size problems, n~100. The variation with n in the 50 to 100 range is shown in fig, 8.
Note that in the baseline method, the machine time varies like n® and therefore little
hope can be held that 3D problems can be handled in this way.

Time Savings Using Dominant E&E’s in the Matrix Operations

As a first step in the computer-time minimization task, let us evaluate the poten-
tial of item b).

It follows from Table IT and fig. 8, that no time savings can be accrued in the cal-
culation of the temperature errors since the computer time is already negligible. There
remains the possibility of dropping the subdominant-eigenvalues terms in the calcula~
tion (through formula (13)) of the G;; which takes up most of the time. Unfortunately,
it turns out that while it is quite possible in each h iterate to drop the subdominant
terms in the temperature calculation, it is not possible to do so in the G, calculation
through formula (13). To see this, let us consider first the temperature calculation in
each h iterate,

We have already verified (Table I) that accurate values of the temperature can be
obtained with only a handful of dominant E&E’s, To examine the problem a little more
formally, let us derive the same result formally from the equations as follows.

In each h iteration, for a set of h iterates, the temperatures at the time of melt
are calculated from

1,ne,
Ty(ty) =3 Py eMh
i
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TABLE 1. COMPUTER TIME BREAKDOWN IN THE BASELINE NUMERICAL METHOD

IBM 370/165 (FORTRAN G} TIME FOR ONE ITERATION IN h, SEC.
METHOD STEP 2 STEP3 STEP 4

STEP 1 COMPUTE COMPUTE COMPUTE

COMPUTE TEMPERATURE INFLUENCE UPDATED TOTAL

E&E’S ERRORS, Ty-T; COEFF., Gij h;
BASELINE
(ALL E&E'S + ~24 ~0 ~79 ~0 ~103
ANALYTIC Gij)

NOTES: IBMPILOT CODE
SLAB, HEATED ON 2 SIDES
TOTAL NUMBER OF ELEMENTS = 108, SURFACE ELEM=2X 12=24
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FIGURE 8. MACHINE TIME REQUIRED BY BASELINE VERSION
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where T;(t;) is the temperature at the i-th surface element at the i-th melt time, t;. P
is a rectangular matrix and the A’s are the eigenvalues, assumed to be ordered so that
02M2XM2...2A. Both Pj;and A;depend on h, the heat transfer coefficient for the
k-th surface element. For any case which involves a nontrivial transient, A; <0, and h,>0
for at leastonek; forthe trivial case,h, =0, all k, A =0, P;; =T;(0), P;;=0, j>1. For
the latter trivial case clearly there is one dominant eigenvalue, A;=0; the practical
cases of interest involve such relatively small positive values of hy that there is a
“cluster” of small dominant negative eigenvalues with a complementary cluster of fairly
large negative eigenvalues. Thus, it usually suffices to sum over the first n, «<n terms.
We shall now derive the explicit dependence of the matrix P on the eigenvectors and
show that the first n, columns of P depend only on the n, dominant eigenvectors. The
equations which Ty (t) satisfy are, in partitioned matrix form:

My Ol T) Ay AR||TH . T(o)_T 1

N & ’ -0
0 M| t]| Ay Ay T

<!
=1

where M;, M, are positive diagonal matrices, T is the vector of surface temperatures,
T that of internal temperature, Ay, Ay symmetric matrices, A’21‘1 the transpose of Ay
and 1 a vector whose components are all ones of appropriate order. The k-th diagonal
element of the Aj; matrix is a linear function of hy, The A matrix is singular for h, =0
with 1 an eigenvector, The differential equation can be converted to the form:

r_i? ~ M;1/2 0 SMII/Z 0 An A'Ei MI1/2 0 M%/Z T

a4
)

0 Mgi/z 2 0 Mé‘i /2 A21 A22 0 Mgi /2 M} /2

The solution for T(t) can then he written as:

/ [e"“ 0 ] [Vﬁ v&] [ mj/? ‘]
T(4) — 1/2 _
T(t)=TyM7 ' *[V{1Vysl 0 et V'11‘2 A M%/Z 1

-

where A; is a diagonal matrix of dominant eigenvalues of {}, A, that of subdominant
eigenvalues, and the corresponding matrix of eigenvectors is:

[Vn Viz]

Var Vo

Assuming e2t is small enough to ignore for t=one of the melt times and considering
the effect of the matrix multiplications:

T() = M7 2 vy 1 [V My 2T+ vE M2 1) = Tt




Now, noticing that the premultiplication of a vector ¥ by a diagonal matrix [D] is equiva-
lent to the premultiplications of the vector col{[D]} by the diagonal matrix, [diag{v} the
result is:

T(t) = [M;1/2v ) [diag v MI/2 T+ vE ME/2T Y col {[ e*1*1}
=[P,] co1{le1}

where P, is a function of only [Vy;/Vs4], the dominant eigenvectors. Therefore, we have
shown even formally that the temperature equation admits an approximate (but as we

have seen accurate) expression in terms of only the dominant eigenvalues and eigenvec-
tors.*

Now the same method used for the temperature errors permits to answer in the
negative the question as to whether the dominant eigenvalues approximation is accu-
rate for the calculation of 97T,;/9hy.

Consider the following development,

oT, ;) 1m (8P EYY )
TS e (=L g py, oL JeMtt
8hk ? 8hk 1513 ahk €
Lin Ast
:Z Rijke jti
3

By similar reasoning the sum can usually be truncated at n,<<n terms but the diffi-
culty is in accurately evaluating Ryjx, j < ne, as a function of only dominant eigen-
values and eigenvectors. Since R is a third order tensor, the analysis is more in-
volved. In order to make the point we shall consider the explicit dependence of the
infinitesimal influence coefficient on the eigenvalues and eigenvectors for the simple
case:

i) 2 equal elements, 1 surface element Ty and 1 interior element T,,
with TN1=TawZ=2 T, and uniform initial temperature equal to T,
ii) My=My=3%
iii) 1 dominant eigenvalue and 2 subdominant |A{ |<<|X,|; the dominant vector

is [V11/V21] and the subdominant [Viz/szl.

The explicit solution of this problem is (temperatures are made nondimensional with
the initial temperature, times with Ax/o, the heat transfer coefficient with 2k/Ax;
Ax is the size of the element):

*By implication, then, also the direct heat conduction problem, when solved by the
eigenvalue method, admits a simplification in terms of only the dominant eigenvalues
and eigenvectors.
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1t follows:

o) Ls)
Ty ] L2d

&2 Vi Vo [Ty = Ty()
L’Tz]:— [ Vi sz] [Tz —Tz(w)] ;
where V is orthogonal so
”Ti(t)] _[T;(”)] [V“ Vi1 [T
LTy ] Ly Lyy vzz] [q(t)]
Then
* A 0T [T10F) [Vir+ Ve
[hj] =[ 0 xz] [72];[72(0)]= [V12+V22]
Since V can be chosen so that
[Vn Voy3-1~2h 1 [\!11 Vi [Al 0
Vi vn] [ 1 -1 ] Vo1 vzj “Lo AZ]
where
Aq==(@Q+h-r); \y=— (@ +h+1); r=vI+h

V“=\f0.5/[1 +hz+hr]; V21=V“(h+r)
V12=\/0.5/[1 +h2—hr]; V22=V12(h—r)

Let

For every h>0, there is a £ >0 such that:
eMt/eht = o MM2)t 55

for t>f. For those values of h and t, we say that Ay dominates A,. It follows that
Ty(t)=2 - P, eM' - P, ™

where

Py =Vii(Vig + Vyy); Py=Viy(Vyy +Vy)
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Note that the dominant term can be evaluated from knowledge of the dominant eigenval-
ue, Ay, and eigenvector, [Vy;/V,4], alone. Call this truncated approximation, T, (t)
where ’f‘i (t)=2-P, eMt, It is this kind of approximation, retaining perhaps five terms
out of one hundred, which is used in the difference quotient estimate of the derivative
of the temperature at a surface element with respect to a heat transfer coefficient

8T, AT, T;h+ah)-T,®) AT, Tih+ah)-T,w)
®h  Ah Ah ~Ah Ah

IR

Note that there are two levels of error: (1) for the accuracy of the true difference quo-
tient in estimating the derivative and (2) for the accuracy in the truncated approxima-
tion to the true difference quotient. For the success of the iteration for estimating heat
transfer coefficients from melt times, the latter error is surely more serious, This
is so since generalized secant methods tend to give convergence rates that are compar-
able to Newton’s method.

In order to indicate the altogether different nature of the series for the analytical
formula for 8T,;/8h, consider the following expression that applies to Eq. (13):

0
a—fli (t) = (Rygt+ Ryg) € 11+ (Rygt — Ryy) €'t

where
Ryy=2Vi; (Vig+ Vy)
Rig=2V13V15(2V11Vip+ ViaVa + V11 Vaa) / (A = Ag)
Ryp=2V3(Vip+ Vap)

As in the expression for Ty(t), the first term surely dominates; however, the coefficient
has a component, Ry;, which depends on all eigenvalues and eigenvectors. That this is
generally true follows from a result in matrix perturbation theory (Ref, 20) that the de-
rivative of any eigenvector depends on all eigenvalues and eigenvectors. Ry, is in fact
the derivative of P, which itself depends only on the dominant eigenvector, [Vy;/Vy].
Define the dominant term in 8T/6h as 81/8h which is the limit of the dominant term in
the difference quotient as Ah—0

oT

5}'1_ = (R11t+ RIZ) ell‘t
For the sake of investigating the effect of dropping all terms except those that depend on
only the dominant eigenvalue and eigenvector define the truncated analytical derivative
as:

8T

h - RyteMt
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Note that ST/ 6h is not the limit of the truncated difference quotient as Ah— 0

In order to illustrate the effectiveness of the truncated difference quotient by com-
parison with the truncated analytical derivatives, expand the above expressions in terms
of h and t.

0.5(1 +h+r) «(laher)t 0.5(1 +h—r) «(1+her)t
V= ey W he TR Y
Tih, 0 =2 [1+h +hr ]e 1+h’—hr | ©

N 0.5(1+h+71) | —(teherit
P bCUA S Lk 4
Ty(h, t)=2 [1+h T hr ]e

AT _Th+ah)-Th)
Ah Ah

8T (L+h+1)t ] .
- (i+her)t
——16h (h, t) 0.5[—2—2—(“}1 vl

aT (b, t) = 6—111 (h, t) +0. 5[1 h]e‘“‘"‘”‘

oT 8’|‘ 1+h-1)t 1+h -
-1 — — (1+her)t
(h,t)= (h,t)+0 SI( Ny | e

where
r=J1+h? .

Figure 9 illustrates that the truncated difference quotient, A’f‘/Ah is a very good
estimate of the true demvatwe, 9 T/0h, for yalues of h and t which satisfy the domi-
nance condition that T is a very good apprommahon to T. The data for the illustration
were chosen to correspond to a typical phase change test condition, i.e., Tyyt=76°F
(298 °K), Taw=946°F (781 °K), Tme1t=300°F (422°K), tmeit=2sec. The value used for
Ah ensures that AT/Ah estimates 8T/9h within 0.5%, while |AT | remains larger than
0.1%. The latter condition guarantees that the computed version of AT/Ah will have
three correct digits, for example, if the computed version of T has six correct digits.

The conclusion then is that item b), dropping the subdominant eigenvalues terms
in the calculation of the temperature errors and the influence coefficient G4y, does not
offer potential for computer time savings since the temperature calculation takes up
negligible time and the Gy expression cannot be cast approximately in terms of only
dominant eigenvalues.

Time Savings by Choosing an Appropriate Method for Calculation of the Eigenvalues
and Eigenvectors

Next let us consider item c). The baseline method as indicated above uses, for
the E&E’s, a transformation-type method for real symmetric matrices. But an attrac-
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tive alternative should be an iteration-type method because good starting approxima-
tion for the E&E’s are available from the previous h iterations. Naturally a method to
obtain a starting approximation must be provided for the zeroth h iteration, but this is
less crucial a step since it occurs only once and the really important time savings
should come from all the subsequent h iterations. The best iteration-type method for
our application seems to be the Jennings algorithm (Ref. 17 & 18) since (i) it can take
advantage easily of the sparseness and bandedness of the A matrix, (ii) it is just about
the only method for dominant E&E’s, (iii) it is very efficient if the starting approxima-
tion is good -- which is a very useful feature in our case when the h iterations provide
us with increasingly better starting approximations of the E&E’s.

Therefore, a specially adapted version of Jennings’ algorithm has been used. Due
to the distribution of eigenvalues for the heat equation, the implicit form of the inverse
matrix is used for the eigenvector recursion or power step. The Jennings’ algorithm
used does not include a refinement, suggested by Clint and Jennings (ref. 18), called
“Jacobi eigenvalue reduction.”

Jennings’ method has been adapted by coding the matrix multiplications to take full
advantage of the sparse and banded form of the real symmetric matrix which arises in
this problem. Multiplications which would produce zero results are thus omitted. This
should result in a considerable time savings in the eigenvalue-eigenvector refinement
over that of the standard Jennings® algorithm as coded by Vachris (ref. 19), for ex-
ample. The Jennings’ algorithm turns out to produce considerable time savings com-
pared to the base line method as fig. 10 shows.

The semi-discrete form of the heat equation results in a matrix for which the most
important eigenvalues are the smallest ones. Jennings’ method requires dominant
eigenvalues to be the largest ones. There are two transformations which could ac-
complish this. The simpler one to apply involves shifting all the eigenvalues by a uni-
form amount. This, unfortunately, results in inherently slow convergence of Jennings’
method since the ratio of the largest unimportant (shifted) eigenvalue to the smallest
important one is around 0.99. The approach which we have implemented results in
faster convergence with values of the above ratio of around 0.4. This method utilizes
a special efficient algorithm for inverting a banded, positive definite, symmetric ma-
trix and is fully described in ref. 20.

In conclusion, item c, the use of an optimum method such as the Jennings’ algorithm

provides interesting time savings when only the dominant E&E’s are required. Simul-
taneously, it follows also that item a), whether it is possible to save machine time by
not calculating the subdominant eigenvalues, is answered in the affirmative.
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Incidentally, a different adaptation of Jennings’ algorithm to problems similar to
our is reported by Rutishauser (ref. 21 and 22).* However, Rutishauser’s adaptation
is very complicated and contains various sophisticated features. The machine time
quoted for a 70 element problem should correspond to some 30 sec. on the IBM 370/165,
Naturally, if this adaptation were applied to our problem, it would result in running
times that are larger than the QR algorithm in the baseline-method.

Minimum Computer Time Alternatives

Summarizing the discussion up to now, we have eliminated item b) and we have se-
lected the optimum method for item c). Therefore, the alternatives remaining are a),
whether to calculate all or dominant eigenvalues, and d) whether to calculate Gi; analyt-
ically or numerically., These alternatives form the matrix given in Table III. The main
conclusion so far is that since the Gi; take up most of the computer time in the baseline
method, minimum computer time will be achieved by (i) calculating only the dominant
eigenvalues; (ii) calculating the Gy; through the numerical method. Indeed, timing of the
alternatives gives the results already indicated in Table III.

The machine time required by the numerical Gy; and the dominant eigenvalues de-
pends upon the number of dominant eigenvalues and naturally decreases drastically with
that number. The optimum number is the one that minimizes the CPU time maintaining
a good accuracy in the results. As expected, it turns out that this number is very
small (fig. 11) and the number of iterations unchanged at constant accuracy (fig. 12).

It is very satisfying that both accuracy and the number of iteration remains substan-
tially constant for a wide range of attractive values, so that a universal working value
can be easily selected.

*Initially, Bauer (ref. 23) generalized Jennings basic idea to nonsymmetric matrices.
Rutishauser (ref. 21 & 22) subsequently specialized and refined what he refers to as
Bauer’s simultaneous iteration method to the symmetric case. Rutishauser (ref. 22,
p. 221) discusses an example which has all of the properties of our problem. The
system matrix is banded, sparse, and definite, the dominant eigenvalues are those
which are smaller in absolute value and the relative magnitudes of the shifted eigenval-
ues to their now smaller immediate neighbors is very close to 1. For Rutishauser’s
example the ratio is 0.999 while for our example it is 0.99. The shifting is required
in order that the working matrix have, as its dominant eigenvalues, the largest ones
in absolute value. Of course, the alternative to shifting is inverting by the Cholesky
factorization method. The expense of the factorization and subsequent multiplications
by now dense, banded matrices in Rutishauser’s case more than compensated for the
slow convergence and poor final accuracy of the shifted result.
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TABLE Ill. VARIANTS OF THE NUMERICAL METHOD THAT HAVE BEEN STUDIED

INFLUENCE COEFFICIENTS Gii

E&E’S

ALL

@ ANALYTIC ® NUMERICAL
EXACT
IN EACH h MUCH SLOWER
ITERATION THAN Ala
EXACT IN ZEROTH
h ITERATION +
APPROXIMATE SUBCOM SLOWER THAN ABOUT THE SAME

A28 AS B18

IN SUBSEQUENT h
ITERATIONS

@®

IN ZEROTH ITERATION,
E&E'S FROM
TRANSFORMATION
METHOD

ABOUT SAME TIME
AS B2 FOR n ~ 100

ONLY
DOMINANT 1\ ZEROTH ITERATION,
E&E’S FROM
JENNINGS IMPOSSIBLE ® FOR STORAGE
ALGORITHM ® FOR ACCURACY

41




100

SEC

10

- -
C VARIANT B18, TABLE Il i
| MACHINE TIME -
| PERITERATION IBM 370/165 i
FORTRAN G
-3 « -
—
i SLAB, HEATED ON i
BOTH SIDES, N = 108,
K = 24
- le,N=90, K=18 :
- = 0 = -
[ sLAB: a=15", Mo off =8 ]
G.. SLAB
- <
[ MATRIX ]
SINGULAR
i SPECIAL -
PROBLEM
LEADING
- EDGE -
N /
p— q -
- -
- -
b= -
- -
- -
. .
(l.e.) (SLAB)
MAX NUMBER | MAX NUMBER
90 108
1 1 1t 1 ti1 1 1 1 .t 11 1 4 1 1 111
1 10 100

NUMBER OF DOMINANT EIGENVALUES

FIGURE 11. OPTIMIZING FOR THE NO. OF DOMINANT EIGENVALUES WITH NUMERICAL
INFLUENCE COEFFICIENTS Gij

42

10

SEC

1.0

0.1




S3INTVYANIDI3 LNVNINOQ 40 HISWNN
00l oL
- 1 1 I ] 1 T T T ] 1 T T 1 I I
L1 3HNOI4 NI SV SISV B
QOHLIW 40 LNVIHVA
z
W @ - -0~ - >
SNOILVYH3LI W3780Yd TVID3dS ‘¥l
40 HIAWNN
% L
avis
\
\
9'86 1 £8¥00°0 —_
\
o . [ o ¢ o — -
8'86 + ¥8Y00°0 W3180Yd 1v103dS 2| \
N = LNIOd 30v4HNS _.
- IVOIdAL
1ot} cev000 p—— g
v'ioL} 3INO LV avis \ SNOILVHILI
aanvigoy | \ 40 Y3IGWNN
L10L + 86¥00°0 - ]
Mo oww.NE Y 988 Nt ZO_.r<_>m.Q \
T L nIE %SZ0 o \

g SAIN3IIOI44300 FIONINTINI TVIIHIWNN ANV SINTVANIOIT

LNVNINOQ 40 H3GIWNN MOT ¥V DNISN ADVHNIOV ANV SNOILVYHILI 40 HIBWNN "C1 34NOI4

43




The machine time required by the alternative A2« in the matrix (Table III) de-
pends also on the number of dominant E&E’s selected. Again the selection can be
optimized, see fig. 13 and 14,

The machine time required by the alternative A2B) is the same as B2B) since the
difference -- for the same number of dominant eigenvalues -~ is just whether or not all
the E&E’s are used in the matrix operations and we have already seen that the differ-
ence is negligible.

The optimum machine time in each alternative is compared in fig. 15. The con-
clusion is that numerical Gy; and only dominant E&E’s represent the minimum machine
time alternative and therefore the one used for the operational computer code. The
variation with the number of elements of the optimum alternative is shown in fig. 16.
The important result in this figure is that the selected alternative not only has the low-
est machine time, but also its machine time varies as n? against approximately n® of
the baseline method. This is a remarkable feature of the method developed here that
permits to run relatively large problems.
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Accuracy and Computer times of the Numerical Method Developed

The method presented, even when run with a minimal number of dominant E&E’s,
is very accurate. This is brought out in a typical case by fig. 17, where the results of
the same problem are presented with increasing number of points.

Note that the three values used in fig. 17 for the total number of points range from
a very low number (n~ 30), to an average number (n~100). The experience to date
suggest that n~ 100 is more than adequate for typical cases and target accuracies of hy
of 1 to 2%. Unfortunately, it is not easy to compare the accuracy of this method with
others, because no other inverse method (with lateral conduction) appears to be avail-
able and nor any exact analytical solution has been tabulated.

A strong indication of the soundness of the method i& the manner of convergence
during the h; iteration. Fig. 18 shows the decrease in error (from a final result) at
each iteration.

As far as tolerances used to declare the iteration converged, there is no point in
requiring very tight tolerances in light of the soundness of the method. Fig. 19 shows
that with 0.5-1% error, the number of iterations can be reduced to typically 4 for slab-
like problems and 2 for 1.e. special problems.

The computer code has been checked out by running numerous test cases. In this
section we show the results for the sample problem supplied by NASA Langley Research
Center. The computed heat transfer coefficients, fig. 19a, match the original values
within +5%. For this case the phase-change temperature was considered variable and
the time of melt was a constant 3.6 seconds. The code was also checked in the more
conventional mode of constant phase-change temperature with a variable time of melt.
To obtain the necessary input information, the NASA supplied run was first duplicated
on our thermal analyzer (direct problem), By plotting the temperature histories, the
times of melt corresponding to T, =1000°R were read off this curve. This information,
along with the resulting h values from the code is shown in figure 19b. The accuracy
in h is again within +5%.

A quantitative indication of the potential machine time reduction exploited during
the optimization effort carried out in this study is given by fig. 20. This is a measure
of the method’s potential that was announced at the outset.

Finally, a point of the maximum importance is the fact that this method appears to
require machine time proportional to n® (n is the number of elements) rather than n®
that appears unavoidable for implicit methods with time discretized. This is very im-~
portant if one insists on or needs to handle problems in the n~ 200 range or above.
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Prospectives for Further Improvements

In spite of the considerable improvements realized during the optimization effort
carried out, it is quite likely that considerable more savings on machine time and stor-
age can be obtained.

First of all, the Gy; calculation seems not to be necessary for every h; iteration.
Just doing it every two hj iteration, will cut the machine time by some 40% (assuming
even number of iterations and the machine time breakdown per iteration shown in table
).

Moreover, the Newton iteration is the simplest and most straightforward procedure,
but it is probable that a more sophisticated procedure may cut the machine time per
iteration. This should be worth another 25% savings.

Finally, the present method could be applied also to direct heat transfer problems.
Of course, there would be a considerable reduction in computer time over the inverse
method. A rough estimate of this reduction is as follows. Currently, a fypical slab-
like inverse problem uses about (k +1) I calculations of E&E’s where k is the number
of surface elements and I is the number of iterations. A direct problem requires just
one calculation of E&E’s. However, the calculations of E&E’s in inverse problems ac-
celerate as convergence is approached; this is particularly true of the k calculations
needed for the Gy;. Probably then the ratio CPU time, direct versus inverse problem,
is more likely equal to the ratio of iterations in E&E’s calculations via the Jennings
algorithm or i,/ (i, +1i;) I where i; is the number of Jennings iterations during the G;;
calculation, i; that for each 1 iteration and i, that for a calculation of the E&E’s starting
with poor zeroth-order guesses. Typical values found have been: i,=2, ij=4, i;=20,
I=4, Therefore, the expectation is that for a typical slab-like 2-sided problem where
k~ 20, the direct method will require -- with the method as it stands -- only some 11%
of the CPU time of the corresponding inverse problem,

TYPICAL RESULTS ON LATERAL CONDUCTION EFFECTS

The computer tool developed (the code is described in the appendices; its name is
CAPE (Conduction Analysis Program using Eigenvalues)) makes it possible to obtain
quantitative results on lateral conduction effects on the data reduction. While the em~
phasis in this study was on developing the computer tool, in this section we briefly pre-
sent some of the typical results that have been obtained.

The first question is naturally, how large are the differences in the h obtained with
lateral conduction and without? Figure 21 gives the comparison in a representative
case, a slab of the small size found for example on the fin of orbiter models of 1 ft.
length., As one would expect, lateral conduction returns h’s with higher peaks.
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Lateral conduction plays a somewhat more complicated role in the vicinity of a
large h(x) gradient, when the slab is thin and in fact heated on both sides as in figure
22,

When the h(x) gradient is not so large, the effects are smaller and qualitatively ob-
vious, see figure 23 where the finite thickness is obtained via the charts of Hunt et al
(ref. 4)

In wing l.e.’s of the size typical of orbiter models, the lateral conduction and finite-
thickness effects are both large. It is no surprise that the results are rather different
than by semi-infinite slab reduction, the only procedure available before this study.
Figure 24 gives a good idea of the typical errors one would incur if one were to neglect
lateral conduction and finite thickness in such small models. * In this case, it is not
obvious how to separate the two effects, lateral conduction from finite thickness, in the
nose region. We believe that the basic reason for the large differences in h over the
wedge portion is the finite thickness effect. This effect on the wedge portion is very
important as at/1? is roughly 3.5 and the yes-no chart indicates that corrections are
definitely needed. A finite slab calculation over the wedge should eliminate a major
portion, but not the entire discrepancy. Lateral conduction effects should still be non-
negligible over the wedge. An assessment is obtained by considering that the heat input
near the nose reaches the wedge within the times of melt, as the length reached is about
0.017 ft and the wedge portion extends from 0,004 to 0, 008 ft,

Radiation, as expected, is negligible in typical situations involving Stycast. Fig.
25 gives typical quantitative results on this matter,

Properties variation with temperature in this case of Stycast are also negligible,
see fig. 26, which represents ar. extreme, if somewhat artificial case, in that the melt
temperatures were relatively high and the ¢, variation with temperature was somewhat
pronounced, simulating a behavior found in some previously heated samples of pres-
sure-cast Stycast 2762, The properties used were measured by Revenko and Hansen
of the Grumman Aerospace Corporation.

Finally, in exercising this data-reduction computer tool in the presence of signifi-
cant lateral conduction, we found sometimes large sensitivity of the h’s from the (in-
evitable) errors in measuring the melt times. This problem, that turns out to be a ba-
sic problem of the phase-change-paint technique in the presence of either finite thick-
ness or lateral conduction, is discussed separately below,

*Incidentally, it should be kept in mind that such lateral conduction errors are not pecu-

liar to the phase-change technique, as severe effects are also found with thin-skin ther-
mocouples in regions of large lateral heating gradients.
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WHEN IS THE COMPUTER TOOL NECESSARY
TO REDUCE THE DATA?

Parameters Characterizing the
Correction to ‘Semi-Infinite-Slah’ Formula

The problem, of course, is one of providing a single set of “yes-no” charts that
will quickly tell the test engineer whether or not he needs to reduce the data via the
computer tool that accounts for lateral conduction. More generally, the “yes-no” chart
should tell whether the error over the ‘semi-infinite slab’ reduction (ref. 1) becomes
excessive, say 10%, because of (1) lateral conduction, (2) surface curvature, and (3)
finite thickness.

In order to maintain simplicity and generality in the chart, we isolated four non-
dimensional parameters that globally characterize the three effects. The approach is |
as follows. 1

|
|
|
|

The criterion on whether a slab is thick or thin is given by the approximate rule
(Jones and Hunt, ref. 1),

i/ - {< 0.2 semi-infinite slab
> 0.2 thin slab

If the slab is thin the corrections of Hunt and Pitts (ref. 3,4) are required. This crite-
rion, of course, is strictly valid only when other corrections are negligible, but it in-
dicates the key parameter characterizing thickness corrections.

A criterion for curvature can be readily obtained by comparing transient heating of
slabs and cylinders under otherwise comparable conditions. The solutions for these
geometries are available in the standard heat transfer literature for many types of
boundary conditions, (e.g., ref. 24, fig. 4-6 and 4-7). Using the solutions for given
and constant heat flux, it turns out that the difference in heat transfer coefficients for
the slab and cylinder exceeds 10% when at/R? is greater than 0.12. This establishes
the limit

g 1< 0.12 no curvature correction
at/Rg

> 0,12 curvature corrections needed

This identifies a synthetic non-dimensional parameter for curvature corrections. The
parameter has the obvious meaning of the distance of heat propagation compared to rele-
vant length, the radius of curvature. Incidentally, at first glance it might appear that
curvature corrections are more restrictive than thickness corrections. Actually, this
is rarely the case. Except for the leading edges, the curvature is generally much
greater than the thickness. Consequently, at/ Ri would have a low value and curvature
corrections would be negligible.
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The situation of the lateral conduction is a little more complicated. The gradients
in the heat-transfer coefficients can be essentially of two types, as shown in the sketch
of fig, 27. When the gradients are very steep, we have a ‘step’ or a ‘top-hat’. These
two cases, even though severe, represent a useful reference.

In seeking synthetic parameters, analytical solutions to the problem of variable
heat flux again provide a precious guide. Analytical solutions for a ‘top-hat’ of given
heat flux, are available for both the two-dimensional (strip) and three dimensional
(spot) cases on a semi-infinite slab (ref. 7). The corresponding temperature distribu-
tions are reinterpreted in terms of required corrections to the semi-infinite slab heat
transfer coefficient in fig. 28. It is seen that the effect of lateral conduction oh the
heat transfer coefficient is “correlatable” by the single parameter a/vat. This param-
eter can be put in the form at/ a? completely similar to the parameter characterizing
the thickness of the slab, The only difference is that the length scale is the width of the
“top~hat” instead of the thickness of the slab., As might be expected, the lateral conduc-
tion effects for the spot are greater than for the strip*. If one takes errors in q at the
center of the hat in excess of 10% as significant, one can determine the values of the
a/Vat parameter at which this occurs:

a/vVat at/a?
strip 1.5 0,445
spot 2,0 0.25

The parameter ot/ a? characterizes the errors, since the point at which one is most
interested to find h is precisely the center of the hat. In other words, the distribution
of the heat input carries explicitly the relevant length scale.

The situation is a little different for the step distribution because here there is no
length associated with the heat input. This is a reminder that in the immediate region
of the discontinuity, lateral conduction is always important., But as the discontinuity is
a gross schematization of a large gradient, the existence of lateral conduction at the
discontinuity is just a defect of the schematization. Appropriately, in the case of the
‘top-hat’, the position for judging whether or not there are significant lateral conduction
effects was not at the discontinuity, but at the center of the hat under the presumption
that the length a is not much smaller than the length scales over which the problem is
examined. It follows that the meaning of the parameter emerging (from fig. 28) is the
usual one, a diffusion length vat/1.45 becoming about equal to the semi-width of the
hat and thereby affecting the conditions at the center of the hat, In the same fashion,
for the step, lateral conduction will be important at distances less than vat/1.45. The
question is whether such distances are of the order we are considering., If the slab
is of width w, lengths about 0.1w must surely be of interest. In other words, some
ten time-of-melt measurements are conceivable over the width w, This fixes the

*The spot problem is axisymmetric and cannot be handled by the code as it stands.
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minimum length scale of interest. Therefore, to be noticeable, lateral conduction
in the case of the hat must diffuse at least

vat
= _>0.
1.45/0 1w
oY
102 250,47
w

This is the appropriate parameter for step distributions.

‘Yes-No’ Charts

The limits for lateral conduction can now be combined with the criteria for thick-
ness and curvature in a single ‘“yes-no” chart, fig. 29. This chart maps out the region
where different corrections are needed. As special case the chart incorporates the
criterion for thickness in the absence of lateral conduction and curvature (Jones and
Hunt, ref. 1) and therefore indicates the ranges where the corrections of Hunt and Pitts
(ref. 4) may be applied.

The yes-no chart should also be used in deciding where to place the adiabatic
boundary inl.e. problems. The distance of this boundary from the stagnation point
should at least be greater than the value obtained by at/ 12=0.2. The results of fig. 24
do not satisfy this criterion by a factor of 2.
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ACCURACY OF THE PHASE-CHANGE
PAINT TECHNIQUE IN THE
PRESENCE OF FINITE THICKNESS
AND LATERAL CONDUCTION EFFECTS

Effects of Inaccuracies in the Tunnel Input

In a comparison between results from different computer tools such as fig. 30,
where the direct and inverse problems were run with two different computer codes,
some waviness was observed in the h distribution from CAPE. We have never encoun-
tered thisbehavior when CAPE was used to solve both the direct and inverse problems.
One can speculate that the waviness results from slight inaccuracies in plotting the tem-
perature, cross plotting the times of melt and reading off the appropriate values for in-
put to CAPE. Since these functions were performed by eye, some loss in accuracy is
inevitable. If we deliberately perturb the time of melt distribution, in a simulated data
reduction, we find the same behavior, as indicated in fig. 31, These perturbations are
imperceptible on the time of melt curve; however, they resulted inpushingthe hdistribu-
tion outside the +5% error limits. Thus, any waviness in the time of melt distribution
appears to be greatly amplified in the h distribution. This is particularly serious where
points are closely spaced. The same behavior is observed if, rather than controlled
perturbations of the melt times at specific locations, random melt time perturbations
of given rms are generated by computer as in fig. 32,

An essential point that is to be stressed is that this happens only in regions where
lateral conduction effects are important or, more precisely, when dh/dx are large
enough to make them so. See, in fig. 32, how well h is recovered when dh/dx is not
inordinately large., The problem disappears, if the melt times are reduced with the
semi-infinite slab approximation - except of course that the h estimates are wrong. The
‘waving’ of the solution, and particularly the higher amplitudes obtained by refining the
grid have a simple physical interpretation.

One can readily imagine what would occur when the time of melt distribution is ob-
tained from tunnel measurements with all the inherent uncertainties. Therefore, the
problem cannot be ignored. In fact, it appears of the greatest importance if one is to
be able to reduce the tunnel data.

Smoothing of Tunnel Inputs

The natural solution to the problem is to ‘smooth’ the raw time-of-melt data prior
to use in CAPE or any other inverse tool, at least when lateral conduction is non-negli-
gible and is to be taken into account, Naturally, smoothing of raw-data is nothing new
in wind-tunnel data reduction and is included in many automatic data reduction systems,

As tool for smoothing ‘noisy’ melt time data, we can borrow a recently developed
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technique, the ‘smoothing spline’ (ref. 25, 26). In essence, the method allows one to
choose an arbitrary degree of smoothness by specifying a parameter R, When R=0
there is no smoothing and the method produces a spline fit through all the data. When
R=1 one obtains ultimate smoothing, i.e., a straight line, For intermediate values of
R, fig. 33 shows some examples of various degrees of smoothing. The right amount of
smoothing is to be found by trial and error.

In detail, the smoothing spline consists of the following. Given a set of raw data
g, associated with a coordinate s, i=m to n, in the interval for s{0, 1}, one computes
a set of f,;(s), a third~order spline for each interval. The four parameters in each f,(s)
are chosen so as to minimize the expression:

m,n m,n —f (S )>2
Si4l s 81 —Liisy

R f’“ds+R

! ? f*"i S 2% ( Q

where R{=1-R,y, Ry=(1~ R)* and Q are chosen parameters that control the degree of
smoothing. R,=0 gives the least square straight line fit, while R;=0 gives the normal
spline,

The technique has been applied to the randomly perturbed times of meit of fig. 32,
The results were not favorable as shown infig. 34, Indeed the smoothing process re-
duces the waviness in the h results, but this does not prevent unacceptable deviations
of the h values near thepeak. The degree of smoothness infig. 34, R= 0.3, is justabout
the maximum values that one can reasonably use, since as R increases the times of
melt are modified to the point of changing the problem, see fig. 35, Naturally, in going
from R=0.1 to R=0.3 there are definite improvements, as fig. 36 shows, but the re-
sults remain unsatisfactory,

If, instead of smoothing, the melt times are just fitted and the fit is used in the data
reduction, the results are equally unsatisfying, apparently because the fit is poor at the
ends of the interval. This is a facet of the problem that should be looked at more close-
ly as perhaps there is a chance for at least better results than fig. 36.

It becomes clear that the problem is of deeper nature and is not solved by straight-
forward treatment of the raw data before reduction,
Interpretation of the Difficulties Encountered

The difficulties experienced lead us to explore the fundamental problem of the sen-
sitivity of the phase~change paint technique to errors in the times of melt, Clearly, this
is the crucial point emerged above, i.e., the fact that small variations in the times of
melt give large variation of h resulting from the inverse problem,

A basic condition for a sound experimental technique requires that the errors in the

74




SMOOTHING SPLINE
R=0.5
Y
0
(o]
SMOOTHING SPLINE
R=0.7
Y
0
(o)
SMOOTHING SPLINE
R=09
Y
o
o ©
0

FIGURE 33. SMOOTHING SPLINE FOR TREATMENT OF “NOISY"” EXPERIMENTAL DATA

75




t
2
=g o :
o °r TIMES CORRESPONDING
w TO GAUSSIAN
s o RANDOMLY PERTUBED
= TIMES {0 = 0.1 sec)
4
1 2 3
2 ) : \ mm L ‘
% 0.005 ft 0.010 |
DISTANCE ‘
hy
1 /
0.04 l —
- [~
ot I F— ( 0.01 t {3.05mm)
gt l —
|
0.01 ft _‘:
(6.1mm) |
h
0.03 2 : 0.06 X 104 i
hq .
GAUSSIAN
&
& — 0 —— PERTURBED TIMES
= NO SMOOTHING
(8]
3 = 4
= 0.02 — —A— — SMOOTHED 1y, H0.04 3
o (R=0.3) e
< =
=
0.01 0.02
1 r 1L 1
0
0 0.005 ft 0.010
DISTANCE

FIGURE 34. DATA REDUCTION AFTER STRAIGHTFORWARD SMOOTHING OF THE MELT TIMES

76




UPPER SURFACE MELT TIMES, sec

CASE AS IN
FIGURE 34

MAXIMUM SMOOTHING

R =1
UNPERTURBED
TIMES \//
./
”~

GIVEN
® RANDOMLY PERTURBED
TIMES

¥ SMOOTHED TIMES, R = 0.5
Q = 0,01
SMOOTHED TIMES SHOWATR = 05
SPURIOUS BEHAVIOR OBTAINED
WITH MAXIMUM SMOOTHING
1 2 mm 3
1 T [ L‘
0 0.005 ft 0.010

DISTANCE

FIGURE 35. EXCES3IVE SMOOTHING MODIFIES INTRINSIC CHARACTERISTICS
OF GIVEN SET OF MELT TIMES.

77




0.04

\ F SAME CASE AS FIGURE 34
‘*, \ VARIOUS DEGREES OF SMOOTHING
' —0O—R =01 Q= 0.01
‘ —-=A—-R =03 Q = 0.01
\ \ WITHOUT
0.03 A PERTURBATIONS
/ OF THE MELT TIMES ~ 0.06 X 10%
w
ol
N‘_‘
2
@ 002 4 0.04
L
0.01 ~c
- -1 0.02
S
| |/ A
1 2 mm 3
0 1 T 1 1
0 0.005 ft 0.010

DISTANCE

FIGURE 36. EFFECT OF VARIOUS DEGREES OF SMOOTHING OF THE MELT TIMES
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measured t, are not magnified into much larger errors of the results of h, i.e., the
error amplification

h; a3t

J

t; oy =0(1)

so that the % error in hy is about the % error in the t;. As a typical value for accurate
and sound techniques, we can take error amplification less or equal to 2.

The question is what values have the (t;/h;) ©h,/9t;) in the typical applications? The
sensitivity found suggests that the (t;/hy) (Oh;/9t;) are unduly large. This can be checked
by calculating them.

Error Amplification in the

Semi-Infinite Slab Reduction

In situations where the semi-infinite slab reduction is accurate, the calculation of
the error amplification is straightforward, By differentiating the explicit expression
for h (t,) (ref. 9) it follows that

tm,3 Ohy =%fori=j
—h-i_atmj 0 for i=j

Therefore, as one would have suspected from the general success of the phase-change
paint technique, the technique is sound and the errors are not amplified and most ob-
viously, are not propagated.

Error Amplification in the
Presence of Finite~Thickness Effects
In the presence of important finite thickness effects, but no lateral conduction, it

is obvious that

bmyy Oy _
hy Bty

if j #1 and not on the ‘other side’ of i. Therefore, at each surface point i, there are

two influence coefficients (calling 1 and 2 the two sides of the slab):
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Naturally, the same considerations are valid for the ‘other side’ of point i. These co-
efficients must be obtained numerically, for example with CAPE or with the tool de-
scribed in ref. 4. This has been done for all slabs heated on two sides with same time
of melt and same T, on both sides. In this case there is only one independent non-di-
mensional parameter, Tp =aty/1°. Therefore, Ay and A, depend only on this param-
eter. Of course, as Ty — 0, we recover the semi-infinite slabh and therefore Ay — -1
and A, 0. For arbitrary Tm), Ay and Ayy are the universal functions given in fig. 37,

The important result in fig., 37 is that at large Tp1 Ay and Ay are very large.
Therefore, the waviness encountered in the data reduction is the result of large error
amplification intrinsic in the physics of the dependence of the h on the ty when finite-
thickness effects are important,

There follows the conclusion that at very large t;, and in the absence of lateral con-
duction, the phase-change paint technique is unsound since it does not satisfy the con-
dition that Aj; and Ay, be less than, say, 2. Moreover, using this limit, one can deduce
from fig. 37 that the range of applicability in the presence of finite-thickness effects is
below about 7,,=2. 5.

One relatively common situation in which one may encounter 7., of the order of 2 is
the trailing edge of a thin fin section such as the one studied in ref, 4.

Error Amplification in the
Presence of Lateral Conduction,

Strong lateral conduction must also result in large error amplification. This is
suggested by the ‘waviness’ experienced in the data reduction process and, more fun-
damentally, by the physical idea behind the error amplification. Therefore, along lines
similar to the finite-thickness case, one can determine the limits of applicability of the
phase-change paint technique in the presence of strong lateral conduction. Also, it
seems probable that the potential of stainless steel models or data reduction on the pres-
ence of fully three-dimensional lateral conduction should be seriously questioned,

These matters have not been looked into, but deserve a close quantitative study.
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CONCLUSIONS

The main conclusions of this study are:

A single and synthetic chart has been developed that permits one to quickly decide
when lateral conduction and finite~thickness effects have to be accounted for in the
data reduction for the three geometries of interest.

A computer tool has been developed to carry out the data reduction for slabs, l.e.
and arbitrary two-dimensional geometries, For typical slab problems, the ma-
chine time is about 6 min. on the CDC 6600, with an accuracy of 1 to 2% on the h
calculation. The labor needed for the preparation of the input data is 15 to 30 min-
utes per case,

The computer tool can also handle a special data reduction problem for l.e.’s,
where only one time of melt is supplied. It is now possible to evaluate, by appro-
priate experimentation, this type of data reduction., The machine time for this
problem is about 2 min, on the CDC 6600,

Lateral conduction is found to have considerable effects on the h value returned es-
pecially for l.e. of wings and fins of sizes typical 1 ft models of complete vehicles.

The inrccuracies in time-of-melt data produce considerably amplified inaccuracies
in "¢ u when strong finite-thickness or lateral conduction effects are present.
Straightforward smoothing of the raw data does not help. This behavior appears to
limit the range of applicability of the phase change paint technique. For finite-
thickness effects, the limit is roughly aty,/1*~2,5 where @ is the thermal diffusiv-
ity, t, the time of melt and 1 the thickness of the slab.

As byproduct of the effort, an interesting numerical method has been developed that
applies to heat conduction ideas evolved in control theory and structural analysis.
The method can be applied also to direct problems of unsteady heat conduction with
rather low computer time estimated, in two dimensions and with constant proper-
ties, at about 11% of the corresponding inverse problem.
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APPENDIX A

USER ORIENTED DOCUMENTATION OF THE CODE

This appendix contains the amount of information strictly necessary to the engi-
neer to be able to use the code. The details of the code structure are set out in Appen-
dix B. The code named CAPE (Conduction Analysis Program using Eigenvalues) solves
the two type of inverse problem mentioned in the introduction, using the method de-
scribed in thebody of the report. CAPE is programmed in Fortran IV for the CDC 6600.
A version with a few double precision statements is also available for the IBM 360/175.

The geometries handled by the code are those indicated in Figures 4, 5 and 6. For
slab-like geometries, CAPE can also handle one-dimensional finite slabs, quasi-one
dimensional arbitrary geometry cases and semi-infinite (in depth) two-dimensional ge-
ometries. The calculation of h via the ‘semi-infinite-slab’ (SIS) formulae is also done
in every case and printed out,

The grid lay-outs are given in figures 4, 5 and 6. In order to operate the code,
the first step is to assemble the input information, i.e.,

a) establish dimensions of the slab, afterbody angle for the 1.e., and geometry
definition of the arbitrary four-sided geometry;

b) decide for one of the two types of problems, the one where all the times of
melt are given or, for the l.e., the special option where only the minimum
melt time around the 1, e, is given; establish, for slab-like problems, whether
both sides are heated or just one,

c) tabulate the time(s) of melt together with the position on the surface(s) at
which they are known.

d) secure the model material properties, i.e. density, conductivity and specific
heat, whether variable with temperature or not; if the material is Stycast,
CAPE can be instructed to automatically select constant, but appropriately
chosen properties.

e) tabulate the adiabatic wall temperature on the model surface(s), whether con-
stant or not,

f)  tabulate the melt temperature(s), whether variable on the surface(s) or not.

g) if a l.e. geometry uses the option of a single time of melt given, obtain the
tunnel gas conditions, M, ¢s¢5 ¥s Pws Tiots Rs PT, Qg (the tunnel gas is
treated as having constant: ¥, gas constant, Prandtl number, etc.). M, o
and o 4 are the effective values in cuts normal to the l. e.

h) decide whether or not the experimental times of melt need ‘smoothing’ of the
inevitable scatter.
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The input cards that need to be prepared for one case are described in table A-1
together with the definition of the symbols in table A-2 and Fig. A-1, A-2 and A-3.

The output printed out by CAPE for each case is described in table A-3 (the input
data printout and the initial calculations), and in table A-4 (the results), This is the
normal printout containing the information needed by the user.

Cases can be stacked at will.

CAPE uses no tapes and no disks. It does use a single overlay consisting of a
root region and three primary levels. The standard score 3.2 overlay feature is used
to prepare the overlay. Three additional main programs control each of the primary
levels, the names being MPCP, MDETRAD and MOUT. CAPE is made up of the main
program and 33 routines.

Minimum storage required depends upon the size of the problem, i.e., the number
of elements of the problem. This is given in figure A-4, Typically, good accuracy is
obtained with N~ 100, for example, N=LXxM=10x9=90 for the l.e,, and N=MxL
=12%x9=108 for a slab-like geometry. For this problem, the storage required by CAPE
is 60gk. CAPE includes a feature that enables the user to keep the storage to a minimum
for the N selected without having to change dimension cards. Appropriate dimensions
are set automatically by the code but the total length in decimals has to be input into the
code, The length can be read from fig. A-4 and the following two cards of the main
program have to be set as follows:

DIMENSION S(L)
CALLSIZE (S, L)

where L is the length in decimals read from fig. A-4. Naturally, if one is not interested
in the storage savings that go with this feature, one can just set L, once and for all, for
the typical N~ 100 problems. When stacking cases, L must be chosen so as to accom-
modate the largest case of the stack.

A guide on the computer time required on the CDC 6600 is given in fig, A-5, Nat-
urally, the computer time depends somewhat on the problem, so that deviations from
fig. A-5 are possible,

Some advice is appropriate on the choice of a few parameters:

1) for the total number of points, it seems that N~100 gives accuracies of the
order of 1 or 2% in h and is therefore considered satisfactory since it is about
one order of magnitude more accurate than the final result, i.e., the experi-
mental h,

2) Inorder to maintain reasonable balance in accuracy between the two directions
ina siab, typically one should use numbers of elements L XM such as 9 (in
depth) x12 (on the surface), 11x19, etc. Analogously, for the l.e., typically
MCAP=10, M=9, L=10 (see figures A-1, A-2 and A-3).
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Card No.

1

6,6a,6b etc.

7.7a,7b,etc.

9,9a,9b, etc.

10,10a,10b etc.
11,11a,11betc.
12,122,120 etc.

13, 13a, 13b, etc;

14
! 15,15a,15b,etc.
16,16a,16b,etc.

17,173,17betc.

18
19,19a,19b etc.
) 20,20a,20b etc.

21

22

TABLE A-1. INPUT DATA FORMAT FOR CAPE

Data

NSIDES, L, M, NE, LLL

LABEL
KEY 10
JGEO, JIMAT

TO, TAW, T™M, EPST, TPS2,
TBG1, TBG2

TAW(1), .. TAW(K)

™), ... TM(K)

NMAT, RHO, CONDAV, CPAV

TMAT(1), ... TMAT(NMAT)
CONDT({1), ... CONDT(NMAT)
CPT(1), ... CPT(NMAT)
DELX(1), ... DELX{MW)
DELY(1), ... (DELY({L)
MCAP, THETA, ALPHA
DELX(1),... DELX(NWEDGE)
DELR(1),... DELR{L/2)

X1}, Y{1), .., X{NN}, Y(NN)

JSIDES, KPTS
X1}, ..., X{KPTS)
T(1),... T(KPTS)
RR, QQ

EMINF, GAM, PINF, TTOT,
RGAS, PR

Format

{415)

(5A10)
6X,5X, 15)
{15,5x, 15)

(7F10.5)

(8F10.5)

(8F10.5)

{110, 3F10.5)

(8F10.5)
{8F10.5}
(8F10.5)
(8F10.5)
(8F10.5)
(110,2F10.5)
(8F10.5)
(8F10.5)

(8F10.5)

(2t5)
(8F10.5)
(8F10.5)
(2F10.5

(6F10.5)
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Remarks

NSIDES = 2 for Le.; for the l.e., L must
be even; For the choice of NE, L, M,
LLL see suggested values

Any alphameric identification

Use tolerances preset by code.

a) 1f the adiabatic temperature or the
paint melt temperature vary on the
surface(s) where h is to be computed,
leave TAW or TM blank

b) For l.es, EPST = EPS2, TBG1 - TBG2

Needed only if the adiabatic wall temp-
erature vary on the surface where the
hs are to be computed (more than 1
card if K> 8).and also if JGEO is not
2. Omit cards otherwise.

Needed only if paint melt temperature
varies on surface where h is to be com-
puted. Omit cards otherwise.

a) Needed only if arbitrary properties are
inputted (JMAT = -1). Omit card
otherwise.

b) {f material properties vary with temp-
erature, CONDAV and CPAV are left
blank.

c) If material properties are constant with
temperature, NMAT is left blank.

Cards needed only if properties are temper-
ature dependent; omit otherwise,

Cards needed only for slab geometry
(JGEO=0); omit otherwise.

Cards needed only for leading edge geo-
metry (JGEO=1 and 2); omit otherwise.

Needed only for arbitrary 2D geometries
(JGEO= -1); omit cards otherwise

KPTS is always even

If smoothing not needed use RR = 0.0,
QQ = 0.001

Card needed only with special option for
le. (JGEO=2); omit otherwise




TABLE A-2. NOMENCLATURE

Symbol Units
ALPHA Effective angle of attack of l.e., positive as in Figure A-2 (‘effective’ means in a degrees
cut normal to the modef L.e.)
CONDAYV Average thermal conductivity of model in the temperature range of interest BTU/sec ftOF
CONDT(I) Thermal conductivity of model (function of temp.) at the temperaturé’ BTU/sec #1°F
TMAT(I), | =1, NMAT
CPAV Average specific heat of mode! in the temperature range of interest BTU/Ib °F
CPT(I) Specific heat of model at temperature TMAT (1) (function of temperature) BTU/Ib °F
DELRI(I} Spatial increments in radial direction for |.e. as indicated in Figure A-2; feet
1=1,L/2
DELX(1) Spatial increments in x direction of slab geometry as indicated in Figure A-1; feet

also for the l.e. as in Figure A-2;1=1, M

DELY({l) ISpa:ia:_increments in y direction of slab geometry as indicated in Figure A-1; feet
EMINF Effective free stream Mach number

EPS1 Emissivity of "“upper” surface of slab-like geometry or l.e. surface

EPS2 Emissivity of “lower’’ surface of slab-like geometry or of the I.e. surface

GAM Constant ratio of specific heats of tunnel gas

JGEO Geometry index; selects geometry and, for the l.e., the type of reduction pro-

blem, as follows: = -1, arbitrary four-sided geometry; = 0, slab; = 1, t.e. with
all melt times given; = 2, l.e. with special option with minimum melt time given

JMAT Model material index; selects model material as follows: = -1 arbitrary; = 0,
Stycast with constant properties, automatically averaged over appropriate
temperature range; = 2, properties used in NASA submitted problem

JSIDES Same as NSIDES

K Number of surface elements on which the hs are to be calculated; = NSIDES
x M for four sided geometries; 2 x M for l.e.

KEY10 Index that selects tolerances: KEY 10= 0, tolerances preset in code

KPTS Number of positions on the model surface(s) at which the times of melt are
given (< K). Same position number on upper and lower surfaces

L Number of elements through the material (see figures A-1, A-2, A-3)

LLL Number of time steps for the time integration of the temperature correction due
to temperature dependent properties or radiation; if the material properties are
constant and radiation is neglected, use LLL =5

M {for slab-like geometry) number of elements along each surface on which the
hs must be calculated (if 2 surfaces, must be same for both); (for l.e.) number of
elements on half |.e. surface — see Figure A-2

MCAP Number of elements into which nose of l.e. is subdivided (see Figure A-2);
must be even

NE Number of dominant eigenvalues {substancially less than N)
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Symbol
NMAT

NN
NSIDES

NWEDGE
PINF

PR

QQ
RGAS
RHO

RR

T, T
TAW

TAW(I)
TBG1
TBG2

THETA
™

T™()
TMATI(I)

TTOT

T0

X {in cards 19)
X {in cards 17)
Y

TABLE A-2. NOMENCLATURE (CONTINUED)

Number of points in thermal properties tables

Number of points to specify corners of elements (arbitrary geometry — see
Figure A-3)

Number of sides {1 or 2} in the slab that are heated (a side not heated is
taken as adiabatic)

Number of elements on the wedge portion of l.e. (see Figure A-2)
Free stream pressure of tunnel gas

(Constant) Prandtl number of tunnel gas

Spline fitting parameter

Gas constant of tunnel gas

Density of model material (constant with temperature)

Spline fitting parameter (= 0 no smoothing; = 1 straight line)
Time(s) of melt; 1 = 1, KPTS

Adiabatic wall temperature, constant on the surface(s) where hs are to be
calculated

Adiabatic wall temperature, variable or just different constants on upper and
lower surface; 1 =1, K

Background temperature for radiation from ‘upper’ surface of slab-like
geometry or from the l.e. surface

Background temperature of radiation from ‘lower’ surface of slab-like
geometry or from the l.e. surface

Wedge half angle of l.e. geometry as indicated in Figure A-2
Melting temperature of the paint, if constant on the surfacef(s)

Metting temperature of the paint, if variable on the surface(s) or even constant
and different between two surfaces; | =1, K

Temperatures in thermal properties table, i.e. temperatures at which a value of
CONDT(I} and CPT(l) is given; | = 1, NMAT

Total temperature of tunnel gas

Initial temperature of model

arc lengths at which the times of melt are given (see Figures A-1, A-2, A-3)
X coordinate of corners of elements (arbitrary geometry, see Figure A-3)

Y coordinate of corners of elements (arbitrary geometry, see Figure A-3)
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Units

psf

ft-Ib/slug °R

Ib/ft3
seconds
OR

oR

OR

°R

R
OR

°R

°R
°R
feet
feet

feet
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FIGURE A-1. INDEXES AND INPUTS FOR SLABS
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EXAMPLE SHOWN:

M=5 L=5 N-=35
NO. OF CORNERS OF ELEM = (M+1) (L+1) = 36

COORDINATES OF CORNERS OF
ELEMENTS (P4, Py, .. ),

ORDERED AS SHOWN,
DEFINE GEOMETRY

neimect | onoenen (D~

TIMES OF MELT INPUTTED
AS FUNCTIONS OF DISTANCE
X ALONG SURFACE

Y Y

PL+1) (M+1)

SURFACE

Py Py P3Py Py
|<—LELEM—->|

FIGURE A-3. INDEXES AND INPUTS FOR ARBITRARY GEOMETRIES
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92




TABLE A-3. OUTPUT FORMAT OF INPUT DATA AND PRELIMINARY CALCULATIONS

3 ,562 THE HEAT TRANSFFR PROBLEM (m & PECTANGLF##FLEMENTS NUMRERER Crp IMNUTSFe=1D92D,d[RIINV OPTS  PapRT R
INPUT DATA
SIZE ? e 12 1 5
NSIDES L M NE LLL NUMBER OF
2 e 2 N EIGENVALUES NE
24 SURFACE ELEMENTS== 3 RNWS HY 12 COLUMNS  ATIVES 178 FLEMENTS 14 nOvINANT MARES. e JRENUTRES 15689 wNRD& OF MEMORY
1 325 33 Tl 649 6Ta 698 722 746 asa A7A 9u> 12546 12674 12382 12890
12998 13574 13682 13737 13761 13%eg 12809 13833 13887 1288} 139ax 139¢1 13983 13977 144801 14025
14049 14273 14797 14121 14145 14169 14277 143R5 14493 1466} Tabin 1471 15699
ECONONOMIZE « o s REDUCE DIMENSTON OF & AND VALUE 0OF MWCRDS FRAv 20000 _TOWARDS  1€693
LABEL INFORMATION Ty °R E E, Tpg °B Tgg, °R QUANTITY L:
2 2 ) s 1 2 1, - 2, VALUE ACTUALLY NEEDED
S40,0000014004540R¢ 1200000  N,r0000 0. n000 S40.000%y Sa.0n0ng VALUE USED
T, R Tgo "R IF CONSTANT
CoOND = 00012 RHO = 147 ,PA000 CP = +22000,
N 53] Cax Tay
1 211.45574 +£000) . (0077 41
2 142.45072 00002 00068
3 120039283 00043 + 10055
s 120.392R3 RITYE] «00055 CONSTANT OR AVERAGE
s 120439283 .00003 «40055 MATERIAL PROPERTIES:
‘6 129439203 ~00003 +C00SS CONDUCTIVITY BTU/SEC-FT-°R
7 120.392R3 .90003 +(908e DENSITY LB/FT
8 142.45072 .00002 +60077 SPFOTFIC HEAT BTU/LB-°R
9 201.45574 «00001 0400000
10 201,45574 +0n001 10077
11 142.45072 +00002 +C0064
12 120449283 00003 20005%
13 120.39283 200003 60055 —xl— / *
14 120.392R3 «00003 «¢0058 LB
1S 127.39283 «00003 «000%5 /
16 120.39283 +00003 0064
17 142.48072 00002 0077 7
18 271,48574 00001 7460000 k1
19 2.1,45574 200001 L0077 - M
20 142,48072 .00002 0068 el A
21 120,39283 +00004 +C00SS T 8
22 120.99283 00004 +00055 \
23 120.39203 +00004 .€0055 kA \
24 120.492R3 £000G4 «00055 FOR EACH ELEMENT CAX(D) = x"
2% 120.39283 «00004 «00064 OF GEOMETRY, NUMBERED I?A \'A
26 142,45072 « 00002 «00077 ASIN FIG A-1, A-2, A-3. CAT() = y CAX=0 last column y
27 2°1.45%74 .00001 7400000 o 2y CAY=0 last row
28 284,90 148 00002 .00038
29 271.45874 00004 «00032
<0 170+26118 «0000% 100027
170.46118 200008 200027
“Tn_ 26118 00005 .00027
"a118 .0000% $60027
LLLY1Y -
..o t.00000 «60019
avs <B4, 90144 0.00000 00016
102 240,78567 0400000 <0001
103 240.78547 1,00000 «00016
104 240,78567 2.00000 «0001e
198 240,78567 3.00000 «00014
106 240,78567 U,00000 «00016
107 2084,90144 v,00000 00019 )
108 02,91148 u.0n000 460000 SMOOTHING OF EXPERIMENTAL TIMES-OF-MELT
R = 0.00000 ~4——— SMOOTHING FACTOR 1st, 2nd, 3rd DERIVATIVES
ovo0 FOR UPPER SURFACE { OF SMOOTHED TIMES OF MELT -3
X [d F P FRP FPPRP
«001600 3,62006060 3,600000 0.076000 £.000000 pLFOOAAA
+004RN0 3.600000 A,606000 0e0F00u* 0.000000 n:iooﬁﬁﬁ
POSITION+ 008000 yypy 7.690000 TiMps Y.606000 04070060 re000000 N ABOANA
AT «010400 Tmpg 3.600000 o 3_400000 0.06000°% €4n00000 n.A00004
WHICH g:i;zg OF 3.:90920 MELT ;.sonuoo 04000004 Nen00000 0.£00604
TIMES 3.600020 .600000 C.0r000* e 00 AB0NAA s
oF 015200 MM 3600000 YSED 37<0600 94070007 £1700000 niinopga | UPPERSURFACE
MELT +01640¢ 3,6a0000 3.¢00000 0.060000 4000200 n.ANBANA
ARE  +017200 3.600000 3.600000 0e04000* 400000 #0004
GIVEN +018n0y 3,.69¢n00 3,400000 6.0¢00L° £.000000 n.F00605
«018R0y 3.60000U0 A,60C000 0e0n00N> 4000000 0.700024
«019600 3.600630 400000 0.0300u0 ©.000000 A.ABDARA
R 0.00600 SMOOTHING FACTOR
FOR LOWER SURFACE
¥ 6 ¥ FP £PP FPPP
001600 3.660550 3,600000 04030040 Ca 800606 n.ANNNAA
«004900 1.630000 3,600000 04070000 €.000302 ALF00ANA
.008r0Q 3.8000060 3. 400000 0.00003° ".000000 N AO0BOA
1010400 3.600060 3.40¢000 040°00u° r.000000 n.A00004
«012c00 3.,6y0000 3,500000 DeRAO0US €.000000 . RE0ARA
«013600 3.6¢000L0 3,496000 0+00000* r£en00000 n:ioohﬁa
2015200 3.600000 2,400000 0.0/0000 f.000000 n.7p0pas ( LFOWER SURFACE
.016400 3.6¢0000 3.400000 0.00000* £ .A00000 aLF00DRR
1017200 3.690090 3400000 0.070007 (4000000 n.An0ARA
L01810¢ 3,6000.0 3406000 0.04000* +e000009 0L FN00AA
101880y 3600000 3.40¢C00 0.04000° (000090 norANAAA
019400 690000 3,400000 0070000 CeANBUOU N.AONAAA

ALL SYMBOLS AS
IN FIG. A-1, A-2, A-3
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TABLE A-4. FORMAT OF OUTPUT OF FINAL RESULTS (SHEET 1 OF 2)
a) FOR A SLAB

INTERPRETATION OF PHASE=CHANGE PAINT DATA

GEOMETRY: SLAB HEATED ON TWO SIVES
LENGTH = «020 FEET THICKNESS = «005 FEET
INITIAL TEMPERATURE = S40.00 DEG R

EMISSIVITY(2) = 0.000

EMISSIVITY(1) = 04000 - /UPPER SURFACE

BACKGROUND TEMPERATURE(1) = 544,00 DEG R
BACKGROUND TEMPERATURE (2) ® 549.00 DEG R

UPPER SURFACE RATIO ¢
SIS
ELEM X TIME(PC)  TEMP(PC) TEMP (aw)  K(SIS)  F(CORR)
FEET SEC UEG R DEG R B/S*F2aDF
1 .0016 3.6000 719,500¢ 1400,000v 0071258 «69871
2 L0048 3.6000 729.0000 1400,000v ,nn?5861  ,65056
3 .0080 3.,6000 767,0000 1400,0000 ,0095437  .59919
“ L0104 3,6000 840,0000 1400,000v ,0139010 60592
S 0120 3,6000 914,0000 1400,0000 ,0194120 .75985
6 .1136 3,6000 992.000n 1400,000u ,0270204  .B6085
7 .1152 3,6000 1058,5000 1400,0000 ,0358432  ,89689
8 ,0l64 3.6000 1097,5000 1400,0000 0420141 «92960
9 nl72 3.6000 1117.5000 1400,000t ,0467515 ,92788
10 0180 3,6000 1132,5000 1400,0000 .0502244 93225
11 .ni88 3,6000 1142,0000 1400,0000 ,0520212 .92816
12 L0196 3.6000 1146.5000 1400,0000 ,0538116  ,92352
LOWER SURFACE

1 .0016 3.6v00  692.0000 1400,0000 958467  ,51267
2 0048 3,6600  700.0u00 1400,000u  .0062084  ,47743
3 20080 3.6000 72640000 1400,000u ,0r74396 42179
4 L0104 3,6000 762,0000 1400,000v ,0A927S7 31407
5 L0120 3.6000  792.0000 1400,000v  ,0109366 26358
6 .0136 3,6000 B825.0000 1400,0000 ,p129326  ,2303%
7 0152 3.6000 856,0000 1400,000v ,H149884  ,20489
8 20164 3,6000 B74,5000 1400,000v  ,0163084 ,19193
9 20172 3.6000 884.,5000 1400.000v .0170544 18109
10 .018y 3,6000 B892.0000 1400,000v ,A1763s6  .17011
1l 20188 3,60600 897,0000 1400,0000 ,0180279  .15862
)2 .0196 3.6000 900.0000 1400.000v 0182664 416677

NOTE: X COORDINATE,
ORDERING OF E

HEAT TRANSFER
COEFFICIENT

W
B/S®*F24DF
,0049789
,0049352
,0057185
. 0084230
0147503
.0232606
.0321476
,0396140
.0433799
0468218
Jelpaell
,0496962

.0029974
,00€9641
,0031380
.0029132
.0028827
,0029790
.0030710
L0031300
.0030884
20030001
.0028596
«0030462

LEMENTS,

SYMBOILS AS IN FIG. A-1.
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VYO &wWwN—

VOB ~NCP S WN -~

TABLE A-4. FORMAT OF OUTPUT OF FINAL RESULTS (SHEET 2 OF 2)
b) FOR A lLe. SPECIAL PROBLEM

INTERPRETATION OF PHASE=UHANGE PAINT DATA

GEOMETRY: CYLINDRICAL LEADING £UGE FOLLCWED BY wEDGE
RADIUS R = <004 FEET S = .0U¢ FEET AFTERBODY LENGTH

THETA = 15.000 DEGREES ALPHA £ 15,000

LEES DISTRIHUTION USED FOR HEAT TRANSFER COEFFICIENT | THESE LINES APPEAR ONLY
MACH NUMBER = 8,000 GAMMA = 1,400 FOR SPECIAL PROBLEM
INITIAL TEMPERATURE = 940.00 DEG R
EMISSIVITY(1) = (000
EMISSIVITY(2) = 04000
BACKGROUND TEMPERATURE(1) = 644,00 DEG R
BACKGROUND TEMPERATURE(2) = S4p.00 DEG R

h HEAT TRANSFER

UPPER SURFACE RATIO T§1s  COEFFICIENT
X TIME (PC) TEMP (PC) TEMP (Aw) K(SIS) F (CORR) H
FEET SEC DEG R DEG R B/S*F2#DF B/S*F2eDF
.0005 4,5501 660.0000 1284,670¢ 0061361 066977 .0041098
.00l6 4.7502  6604000n 1265,176¢ 0061918 48776 0030201}
0026 5,2005 660.0000 1232,4878 0062427 025981 .0016219
L0037 5.8007 660,0000 1205,6169 .0061997 12706 .00u7866
L0047 6,4519  660,000p 1180,475¢ 0n61425 05206 .0003198
L0062 7.4963  660.000n 1168,704y .0r58256 «n3309 J0pul928
L0072 7.8821 660.0000 1168,7v4u «0n56817 + 03359 0001908
.0082 8,0959  660.000nr 1168,7uéy 20056064 03370 .0ou1889
0092 8.,2651 660.,0000 1168,704¢ .0n55489 «n3371 .0001871

LOWER SURFACE

.,0005 4,5501 660.,0000 1296,185¢ 0060250 8194 , 0048349
0016 44,7502 660+0000 1300.,0000 0058669 +82409 0048349
.,0026 5.,2005 660,000n0 1296,185¢ oNN56401 v85724 .0048349
.0037 5.8007 660,0000 1284,670¢ 005438 75606 0041098
0047 6,651 660,0000 1265,176¢ 005310 56822 .0030201
. 0062 7.4963 660.0000 1246,8929 «0050779 e39646 .0020132
0072 7.8821 66U. 0000 1246,892Y e 69545 +366823 0018174
«0Q82 Be.0959 66(Q«y000 1246,892Y o0 F48899 234142 +0016695
«0092 82651 660.,9000 1246,892Y 0048406 32077 0015527

NOTE: ARC LENGTH X,
ORDERING OF ELEMENTS,
SYMBOLS AS IN FIG. A-2
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OCTALS

STORAGE

REQUIRED
INCLUDING
SYSTEM QUANTITY
ROUTINES L
1‘ Q
NE = 5 (NUMBER
OF DOMINANT
EIGENVALUES)
+
OVERLAY
80gK 8000
STORAGE
60gK
8 v 6000
am—"
40gK QUANTITY L 4000
208K 2000
0
0
0 50 100 150 200

NUMBER OF ELEMENTS

FIGURE A-4. STORAGE REQUIRED BY CAPE
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ADD 40 sec
FOR COMPILATION

400

EXECUTION
TIME PER RUN

CDC 6600

NE =5 (NUMBER
OF DOMINANT
300 EIGENVALUES) ]

TD = TEMPERATURE
DEPENDENT PROPERTIES
CP = CONSTANT
PROPERTIES
€ RADIATION

& 200

TD&e;ﬁ/
100

/ l.e. SPECIAL PROBLEM

CP&e=0

—4-_/
50 100 150
NUMBER OF ELEMENTS

FIGURE A-5. COMPUTER TIME REQUIRED BY CAPE
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3)

4)

5)
6)

for the number of dominant eigenvalues NE, use a standard NE=5. Absolute
safety is afforded by NE=10, but the CPU time savings between 5 and 10 are
some 50% and are therefore attractive.

Since the material properties variations with temperature do not have but a
tiny effect, great sophistication in the table of the properties is not warranted.
Use, for example, NMAT=5,

LLL=5 has been found adequate,

The tolerances set automatically by the code if KEYIO=0, are typical, per-
haps onthe tight side, namely at all surface points, simultaneously the h’s differ
by less than1% between iterations and the temperature errors, Tpo =T
is less than 1°R.

computed »

Other points worth of attention are the following:

7)

8)

9)

10)

11)

Each element in the geometry must be attributed the ordering indicated in fig-
ures A-1, A-2 and A-3; it is in this order that such arrays as DELX, DELY,
DELR, TAW, TM, X, Y are to be structured. For the slab, one first inputs
the entire set of (say) TAW etc. for the upper surface, followed by the lower
surface., For the l,e., similarly first the ‘upper’side of fig. A-2, sequen-
tially followed by the lower side. Similarly with the X(KPTS) and T (KPTS)
arrays. However, for DELX and DELR, both in the slab and in the l,e., be-
cause of symmetry, just one set -- say for the upper surface —- is to be in-
putted. When inputting the lower surface of a 1. e., start with the point on the
axis of symmetry (which therefore is considered a double point).

To do a one dimensional finite-slab geometry or a quasi-one dimensional ar-
bitrary geometry take M =2 respectively in the slab and the arbitrary geom-
etry; in other words, ‘double’ the given input data in the M direction.

To do a semi-infinite slab or a semi-infinite arbitrary four sides geometry,
take the ‘lower’ surface in fig. A-1 and A-3 far enough into the material so
that there the initial temperature is substantially unchanged up to the maximum
melt time; then prescribe NSIDE =1 and the code will treat the ‘lower’ surface
as adiabatic.

In l.e. cases where the input data are symmetric and @ =0, the code works
out the entire problem disregarding the symmetry; there is no artifice to take
advantage of the symmetry, On a slab or a four-sided geometry, to take ad-
vantage of symmetry of inputs, either in the lateral or in the depth direction,
just input one-half of the problem.

Appendix B gives the input cards and printouts for two check cases.
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APPENDIX B

PROGRAMMER-ORIENTED DOCUMENTATION OF THE CODE

In this appendix, the details of CAPE organization and structure are assembled.
A simplified overall flow diagram of CAPE is given in fig, B-1,

CAPE is organized in a main program and 33 subroutines. The list of the sub-
routines is given in table B-1 together with the function of each subroutine and the sub-
routine from which it is called.

The overall logic of the program can now be organized in terms of the subroutines
as shown in fig. B-2,

The flow charts for each subroutine are given in sheets Bl - B29, (four routines
ERFCC, COTAN, ARCOS, and OUT are omitted since they consist of obvious few lines
of coding). The object deck of each subroutine includes comment cards for each of the
operations described in the flow chart so that correspondence between the instructions
and the flow chart can be done at once,

The set of input cards for two check cases are presented in sheet B-30 while the
respective outputs are given in table A-4,

The standard output has been described in Appendix A, For detailed output that
maps the iterations and eigenvalues and also times the main steps of the calculation,
the flags LTE and MON must be set equal to six in a statement card at the very begin-
ning in subroutine PCP SIZE. All the detailed output refers to the iterations performed
in the subroutine DETRAD and the subroutines that are called from it.

Self-explanatory diagnostic messages are printed out for the two main failure modes
(that are intrinsic to the method, rather than to errors in input preparation and in-
tegrity of the code). One mode is a failure in the inversion if the matrix G;; is singular.
The other mode is the failure of the Jennings algorithm to converge, within the maximum
number of iterations, to the requested number of dominant eigenvalues and eigenvectors,
The latter mode of failure has never been encountered in normal runs. Presumably the
corrective action would be to increase the allowed number of iterations, fixed by the
index NIJ that is set in statement at the outset of subroutine SIZE. The former failure
mode has been encountered once while exploring the extreme values for NE, the number
of dominant eigenvalues and eigenvectors. It was found that one slab-like case gener-
ated a singular Gy; matrix for the extreme value of NE equal to 2. The corrective action
is, of course, to use a reasonable number of NE, from 5 to 10,
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T

INPUT: JSIDES, L, M

JGEO

JMAT

O, SLAB TINIT

1, L.E. {tm bs. X} €1, €,

2, L.LE.{LEES) TBG, 1. 1BG, 2

-1, ARBITRARY Tm vs. X (TABLE)
0, STYCAST TAW vs. X (TABLE)

1, STAINLESS ST. t\Mm vs. X (TABLE)
R

2, NASA DEMO.
-1, ARBITRARY

INPUT
kvs. T

Cpvs. T {TABLE)"

Lop
(TABLE)*

O (SLAB)

A

INPUT

AXI,AX"), ey AXM
AYl,AYz, eny AYL

kij (o

COMPUTE

CpV)i

USE INTERNALLY

TABUL. PROPS': p

k =%IkTiNIT) + kK (Twm)]

Cp = %[Cp (TyN|T) *+ Cp (TM)]

-1 (ARBIT.}

INPUT
X1,Y1, X2, Y2, ...
(COORDINATES
OF CORNERS

OF ELEMENTS)

L 4
COMPUTE
kij (0CpV) i

—4

1,2(LE)

INPUT

Mcar, ©, a

Arl, Arg, ... Arl/2
AXy, AXz, ..., AXMWED

I

COMPUTE
kij (oCpV) i

*SINGLE ENTRY IN

TABLE MEANS CONSTANT

VALUE

JGEO

2 (LEES)

FIGURE B-1. OVERALL FLOW OF LOGIC IN CAPE (SHEET 1 OF 3)
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INPUT:
Meff, Y Poo
To. RGAs, Pr
SMOOTH/INTERPOLATE l
tm vs. X DATA
(OPTIONAL) ﬁ/?}';":UTfW
FOR SURFACE
ELEMENTS
COMPUTE hgs,
LET hj(0) = hsis, i
J=0
F J=1
COMPUTE
EIGENVALUES AND
EIGENVECTORS OF
COEFFICIENT MATRIX
YES RAD
AND/OR TD
PROP.
COMPUTE TEMP.
ERRORS
f=Tmi-Tiltmi)
COMPUTE TEMP. M
ERRORS AND

CORRECT f FOR
NONLIN. FORCING
TERMS

FIGURE B-1. OVERALL FLOW OF LOGIC IN CAPE {SHEET 2 OF 3)
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COMP.

YES Gij
£f=0
PRINT i=1
hj, ETC L
rﬁ i=i+1
PERTURB
h; BY 10%

NO

i
> JSIDES X M

YES

UPDATE h{'S FOR

NEXT ITERATION
hi(n+1) = hi(n) + 8h;

FIGURE B-1. OVERALL FLOW OF LOGIC IN CAPE (SHEET 3 OF 3)
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Name

SIZE

PCP

SLAB
LEAD

ARBIT

ELEM

SMOOTH

SMOFIT
DATFT
LINFIT
ATTACK

LEES

DETRAD

IJEN

EIGVC

BFACS
BSOLS

ORNML

HETRAC
RVORDR
AORDER
DISPLA
LUSOL
PART

TABLE B-1. SUBROUTINES USED IN CAPE

Called by
MAIN PROG

SIZE

PCP

PCP
PCP
ARBIT
PCP

pCP

SMOOTH

PCP, DETRAD
PCP

ATTACK

SIZE

DETRAD
DETRAD

DETRAD, IJEN
DETRAD, IJEN

IJEN

DETRAD

1JEN

IJEN, RVORDER
Various

RIMEQF

Various

Main Purpose
Computes storage locations needed. Compares to number requested.

Reads main input, output initial data. Performs preliminary calculations.
Controls geometry, material properties and other options.

Computes volumes and conduction shape factors for slab geometry.

Computes volumes and conduction shape factors for leading edge
geometries.

Orients individual elements of the arbitrary geometry for computations in
ELEM.

Computes volumes and conduction shape factors between two arbitrary
quadrilateral elements of the arbitrary geometry.

Sets up calculations for DATFT and normalizes the range for the smoothing
fit.

Finds value from table by smoothing-spline interpolation.
Determines Taylor series coefficients for smoothing spline fit.
Finds value from a table by linear interpolation.

Finds element number closest to stagnation point and renumbers elements
as required by LEES.

Computes ratios h/hgp and Taw variation around leading edge for the
special |.e. problem.

Main routines for the inverse problem calculation. Calls eigenvalue and
matrix routines. Perturbs h to generate influence coefficients. Performs
iteration on h. Returns the h values.

Obtains dominant eigenvectors and eigenvalues of a given matrix (using
Jennings method, i.e. by simultaneous vector iteration).

Prepares approximate guesses for the eigenvectors to start the Jennings
algorithm iteration for the zeroth h iteration.

Factorizes a banded positive-definite matrix.

Using the factors of a given banded positive-definite matrix A as generated
by BFACS solves for X the system AX =Y.

Carries out the standard Gram-Schmidt orthonormalization of a group of
vectors.

Sets up coefficient matrix (of conductances) in compact form.
Re-orders estimated eigenvalues according to magnitude.

Sets up permutation indices needed for ordering the eigenvalues.
Prints information, mainly debug special output, in array form.

Given the results of RDET, substitutes the solution for right hand side.

Prints debug output information and intermediate timing of calculation.
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Name

RDET

RIMEQF
SCAPRO
SWITCH
SCAPR2

ERFCC
COTAN
ARCOS
ouT

TABLE B-1. SUBROUTINES USED IN CAPE (CONTINUED)

Called by

RIMEQF

DETRAD
Various
DISPLA
ORNML

pPCcP
ELEM
ELEM
SIZE

Main Purpose

Given a matrix, it decomposes it into two triangular arrays, a lower and an
upper A =— +

Solves system of simultaneous linear equations of type AX =Y for X.
Computes scalar products of two vectors and adds a value to the result.
Converts columns of a matrix to rows or visa versa.

Computes scalar product of two vectors (without adding a given number
to the result)

Computes complementary error function of a given argument.
Computes the cotangent of an angle.
Computes the arc cos of an angle.

Prints final output of problem.
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— — — — — — S——

PCP

INPUT: JSIDES, L, M
O, SLAB TINIT

JGEO 1, L.E. {tM vs. X) €1,€,
2, L.E. (LEES) TBG,1TBG, 2
-1, ARBITRARY Tm vs. X (TABLE)
O, STYCAST TAW vs. X (TABLE)

IJMAT 1,STAINLESSST.  t\ vs. X (TABLE)
2, NASA DEMO. R

INPUT - p
k vs. T (TABLE)*
Cpvs. T (TABLE)*

l -1, ARBITRARY

USE INTERNALLY
TABUL. PROPS.:

O (SLAB)

JGEO

P

k=% [k(TiNIT) + k (TM)]
Cp="% [Cp (TINIT) *+ Cp (Tm)]

1,2 (L.E)

—_ — _ -(ARBIT)-
[SLAB _| [Kﬁe.n
INPUT
. INPUT l | X1, Y1, X2, Ya, ...
AXy, AX,, ..., AXMm {COORDINATE
AY,y, AY,, ..., AYL OF CORNERS
L— _, | OF ELEMENTS)

] [ — ¥ —
|
I

I
Mcap, ©, «

Ary, Ary ..., Ar/2

I I AXy, AX,, ..., AXMWED]

*SINGLE ENTRY IN
TABLE MEANS CONSTANT
VALUE

CONT'D

JGEO

2 (LEES)

FIG. B-2 OVERALL FLOW OF LOGIC ON CAPE IDENTIFIED WITH MOST IMPORTANT

ROUTINES. (SHEET 1 OF 3)
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FﬁﬁoEﬁi+I?ﬁn6FT%

DAT FT

]

INP
To.

Metf, 7. Poo

UT:

RGAS. Pr

SMOOTH/INTERPOLATE J
tm vs. X DATA
| (OPTIONAL) | S/C:)“;:LJTTAEW
FOR SURFACE
L | ELEMENTS
COMPUTE hg;s, ;
b = _
R e (e —
DETRAD + a
ANCILLARY | LEThig =hss,; |
ROUTINES
<
J=0
n J=1
v
COMPUTE
EIGENVALUES AND
EIGENVECTORS OF
COEFFICIENT MATRIX
S RAD
ALZ ANDIOR TD
PROP.
COMPUTE TEMP.
ERRORS
f=T:-T; .
COMPUTE TEMP. m,i = Tiftm,)
ERRORS AND r

CORRECT f FOR
NONLIN. FORCING
TERMS

E

Q,

FIGURE B-2. OVERALL FLOW OF LOGIC ON CAPE IDENTIFIED WITH MOST IMPORTANT
ROUTINES. (SHEET 2 OF 3)
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T

| DETRAD (CONT'D)

|
-

YES

COMP.

| PERTURB
hy BY 10%

i
> JSIDES X M

NO

NEXT ITERATION

| UPDATE hj'S FOR
l hi(n+1) = hj(n) + 8h;

FIGURE'B-2. OVERALL FLOW OF LOGIC ON CAPE IDENTIFIED WITH MOST IMPORTANT

ROUTINES. (SHEET 3 OF 3)
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SHEET B-1 SUBROUTINE SIZE FLOW CHART

READ INDECES:
#OF SIDES OF SLAB,
#OF ELEMENTS,
# OF EIGV., ETC.

‘

PRINT INDECES

‘

PRINT TITLE OF
CASE BEING
COMPUTED

.

COMPUTE
DIMENSION

OF ALL QUANTITIES
LO = LZ, MI—>M9

v

WRITE
DIMENSIONS

1S
USER-ASSIGNED
TOTAL DIMENSION
SUFFICIENT? -

CALL PCP
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SHEET B-2 (SHEET 1 OF 2) SUBROUTINE PCP FLOW CHART

INPUT

JGEO, JMAT, TO,
TAW, TM, EPS1,
EPS2, TBG1, TBG2

N
INPUT o YES
TAW (1)
1
NO
INPUT YES
™ (1)
-1 A 2
JMAT
N
INPUT USE USE USE
RHO, COND vs. STYCAST STAINLESS NASA DEM.
T,CPvs. T PROP. STEEL PROP. PROP.
) /\ |
JGEO
CALL CALL CALL
ARBIT SLAB LEAD

.o
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SHEET B-2 (SHEET 2 OF 2) PCP FLOW CHART

COMP.

THERMAL CAP'S
AND CONDUCTANCES
FOR ELEMENTS

4

INPUT
JSIDES, KPTS,
Tvs. X

@

CALL
SMOOTH
UP. SURF.

CALL
SMOOTH
CALL
SMOFIT

CALL

(LEESOPT.) 2 SMOFIT
JGEO UP. SURF.

CALL
SMOOTH
LO. SURF.

CALL
ATTACK CALL
SMOFIT

LO. SURF.

COMP.
HSIS (1)
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SHEET B-3 SUBROUTINE SLAB FLOW CHARTS

/

INPUT
AX, AY ARRAYS

¢

COMPUTE VOLUMES
OF ELEMENTS

:

COMPUTE COND.
SHAPE FACTORS
IN X-DIRECTION

v

COMPUTE COND.
SHAPE FACTORS
IN Y-DIRECTION

y

COMPUTE
X-DISTANCES OF
CENTERS OF SURF.
ELEMENTS

RETURN
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SHEET B-4 SUBROUTINE LEAD FLOW CHART

_~" INPUT MCAP,
THETA, ALPHA

AR, AX

(OV. WEDGE)

ARRAYS

:

COMPUTE
PHI (1), X(1}) ALONG
SURFACE FROM S.P.

'

COMPUTE VOLUMES
OF ELEMENTS

:

COMPUTE CONDUCT.
SHAPE FACTORS IN
X (ALONG SURFACE)
DIRECTION

y

COMPUTE CONDUCT.
SHAPE FACTORS IN
RADIAL/NORMAL
DIRECTION
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SHEET B-56 (SHEET 1 OF 3) SUBROUTINE ARBIT FLOW CHART

INPUT:
Xl,Yl,Xz,Yz,...
(COORDINATES OF
CORNERS OF ELEM.)

L

J=1

EXAMPLE,

L=4
M=3

5
=1
UPPER SURF. ELEM. LOWER SURF.

LOCAT.
MIDDLE ONE UP FROM
LOWER
RELABEL COORD. RELABEL COORD. RELABEL COORD.
(e.g. ELEM (D ) (e.g. INELEM D ) (e.g. INELEM 3 )
1——+ A 2—B a—A 3-8 Yy— A 4—~B
7—= C,6—D 8—C 8 —D 9—C, 6§ =D

CALL ELEM
FOR AREA (7495),
A/AY @ — 1

CALLELEM
FOR AREA (a388),
A/AY @ — ¢

CALL ELEM
FOR AREA D
A/AY (D - ¢

RELABEL COORD. RELABEL COORD. RELABEL COORD.
{e.gq. INELEM @ ) {e.g. INELEM B ) {e.g. ELEM @ )

2 A a—,B 3— A, v —=8B 4 —s A, 5—=B
g —-C 7—D § —=C, 8 —=D 10—-=C, 9 — D
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SHEET B-5 (SHEET 2 OF 3) ARBIT FLOW CHART

CALL ELEM CALL ELEM CALL ELEM
FOR AREA (2087), FOR AREA (3758), FOR AREA @) ,
A/AY € —=(D A/AY ¢ —B) A/AY n—=@)
(AJAY) g (A/AY) 5 (A/AY) &
1_ + _l_ ; + ; L + L
A A A 2 /A A A
E)oee @ewd | @), 2B n| | B @),
=1+ A/AY @=0
J=J+1 NO
YES
J=
UPPER SURF. ELEM. LOWER SURF.
LOCAT
MIDDLE
RELABEL COORD. RELABEL COORD. RELABEL COORD.
(e.g. INELEM D ) (e.g. IN ELEM D ) {e.g. INELEM @ )
e—A, 7 —B {—A, 8 B @—A, 10—B
6—C, O—D 7—C, e —D 9 ——C, n —=D

DO O
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SHEET B-5 (SHEET 3 OF 3) ARBIT FLOW CHART

CALL ELEM
FOR A/AX pvg

RELABEL COORD.
{e.g. INELEM ® )
7 A, U ——eB
®—=C, 6 —=D

CALL ELEM
FOR A/AX@—

CALL ELEM
FOR A/AX 25

RELABEL COORD.
(e.g. INELEM ® )
8 Ay —=B

M——C, 7—=D

CALLELEM
FOR A/IAXG = @

CALL ELEM

RELABEL COORD.
{e.g. IN ELEM )

10 A,

oW

H C. 9

CALL ELEM
FOR A/AX) g

(A/AX) g

I=1+1

J=J+1

SET A/AX OF LAST COLUMN

(e.9. (9) @ @ -0
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=4

SHEET B-6 SUBROUTINE ELEM FLOW CHART

COMP AREA ABCD

!

A

SKETCH 1

SKETCH 2

NO ADJACENT %S> 90°

COMP %S A B,
SKETCH 3 C,D OF QUADR.
ELEMENT
A>90°, B>90°

COMPARE

(C> 902 ANGLES
D>90 B> 90°
— OR c>90°

D> go:)

) A> 90 f l
DIVIDE DIVIDE
QUADRIL. RE‘éA%gL QUADRIL.
INTO 3 QN L S INTO 3

—— TRIANGLES
S e
’ D —— A

! — !
COMPUTE COMPUTE
CONDUCT. CONDUCT.
SHAPE SHAPE
FACTORS FACTORS
(C.S.F.) FOR FOR
TRIANGLES COMPARE TRIANGLES

l ANGLES L
COMBINE COMBINE
FOR CS.F. FOR C.S.F.
FROM AD FROM AD
TOBC TO BC

|

DIVIDE
QUADRIL.
INTO 2
TRIANGLES
(SK. 3)

v

COMPUTE
CONDUCT.
SHAPE
FACTORS
FOR
TRIANGLES

'

COMBINE
FOR C.S.F.
FROM AD
TOBC

3
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SHEET B-7 SUBROUTINE SMOOTH FLOW CHART

T

SCALE INDEP.
VARIABLE (X) TO
SPANOTO 1.0

CALL
DATFT

SCALE TAYLOR
SER!ES COEFF.'S
TO CORRESPOND
TO ORIGINAL X

i

PRINT

ORIGINAL Tvs. X
AND SMOOTHED
T.T,7°, T"vs. X
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SHEET B-8 SUBROUTINE SMOFIT FLOW CHART

RANGE OF

LOCATE LARGEST
X () INTABLE
SMALLER THAN

—_—

1

OBTAIN YP BY
TAYLOR SERIES
EXPANSION
AROUND X (I}

YES

v

EXTRAPOLATE,
USING TAYLOR
SERIES EXPANS.
AROUND SMALLEST
X IN TABLE, TO
FIND YP

EXTRAPOLATE,
USING TAYLOR
SERIES EXPANS.
AROUND LARGEST
X IN TABLE, TO
FIND YP

<
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SHEET B-9 SUBROUTINE DATFT DESCRIPTION (SHEET 1 OF 2)

Smoothing Spline Routine

TITLE: DATFT

AUTHOR: Antony Jameson, Grumman Aerospace Corporation

DATE: January 1972

APPLICABLE COMPUTERS: IBM 1130, 360-370 series, CDC 6600 series
SOURCE LANGUAGE: IBM 1130 FORTRAN

PURPOSE: To generate the smoothest possible curve that will pass within specified tolerances of a given set of
data points. By reducing the tolerances to zero, the curve can be made to pass through the data
points. By increasing the tolerances sufficiently the smoothest curve becomes a straight-line, least-

squares fit to the data.
METHOD: To construct a smoothing spline:

Let {y;, Xi)' i=1,2, ...,n, be the coordinates of the data points. Then construct the curve f(x)
that minimizes

X n —f 2
= n ’” 2 Y1 |
I = Ry (% dx+Ry 3 ) (1)

X1 i=1

where

and

Cl-I = tolerance for ith

point
Here the second derivative " {x) is used as a measure of curvature.

The minimizing curve is a piecewise cubic curve that can be expressed over the interval from x; to
Xipq in the form

{x — xi)2 {x — x;
fx) = § + (x—x) ff + == £+ —— £ (2)

where

1 fI and 1‘I are the first, second, and third derivatives at X;.

The coefficients fl f; and fu are calculated by a method similar to that described by Reinsch

{(Num. Math. 10, 1967, 177-183.). This requires the solution of a set of linear equations with a

sparse matrix containing five diagonals. The number of computer operations is directly proportional
to the number of n data points. This is an advantage compared with some other regression techniques
where the number of the operations may vary as n3.
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METHOD:
{Continued)

LIMITATION:

USAGE:

SHEET B-9 SUBROUTINE DATFT DESCRIPTION (SHEET 2 OF 2)

In the limit R1 - 0 the minimizing curve reduces to a sptine passing through the points. In the limit
Ry = 0 the minimizing curve reduces to a straight line giving a weighted least squares fit to the data.
Inthe routine R4 and R, are determined by a ‘smoothing parameter’ R through the relations

- 4 -
Ry = (1-R*, Ry =1~ Ry

so that R = 0 yields a pure spline (zero smoothing) and Rq = 1 gives a straight line (full smoothing).

The tolerances can be varied from point to point by choice of the weighting parameters Qi' Smaller
values of Q. should be used in regions where the curve is expected to have high curvature, to prevent
the smoothing procedure replacing the true curve by one of larger radius passing outside the data
points.

The curve that minimizes | has zero curvature at the end points:
f (x1) = f (xn) =0

If the true curve is known not to have zero curvature at either or possibly both of the end points, this
will lead to a systematic error near the end point where the violation occurs. The minimization
problem, Eq. (1), with free end conditions ought then to be replaced by a minimization problem
with appropriate constraints at the end points. The existing routine has no provision for this.

CALL DATFT {M,N,S,F,Q,R,A,B,C,D)

The input data consists of the arrays F (1) of values of the dependent variable, S(1) of values of the
independent variable, and Q(1) of the tolerances to be allowed. S(l) must be a monotone increasing
or decreasing array. It is alsc necessary to supply values for the indices M and N, and the smoothing
parameter R. The routine generates a fit over the interval from S{(M) to S(N). R should be a number
between 0.0 and 1.0; R = 0.0 gives zero smoothing {(pure spline}; R = 1.0 gives full smoothing
{straight line least squares fit).

The routine returns the arrays Al(l), B(1), C{1), and D{1) defined from | = M to 1 = N. A{l) are the
fitted values at S{1). B(l), C(I) and D(1) are the first, second, and third derivatives to be used in
evaluating the cubic curve over the interval from S{1) to S(I+1) according to the formula, Eqg. (2).

SUBROUTINES REQUIRED: None.
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SHEET B-10 SUBROUTINE LINFIT FLOW CHART

NO

NO

Xp >
RANGE OF
TABLE

LOCATE POINTS
X (1) AND X (I + 1)
IN TABLE, WHICH
FALL ON EITHER
SIDE OF XP

|

INTERPOLATE
TO FIND YP

¢

XP <
RANGE OF
TABLE

YES

v

YES

EXTRAPOLATE
BELOW TABLE
TO FIND YP

EXTRAPOLATE
ABOVE TABLE
TO FIND YP
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SHEET B-11 SUBROUTINE ATTACK FLOW CHART

INPUT
EMINF, GAM, PINF,
TTOT, RGAS, PR

YES

ADD POINT AT
STAG. PT. (X =0,
¢ = 90°) AND RE-
LABEL X AND ¢
ACCORDINGLY

CALL
LEES, ABV.
AND BEL.
STAG. PT.

RELABEL TAW
AND HR TABLES
TO BE CONSISTENT
WITH DETRAD
NUMBERING SYST.

122

NO

LOCATE SURFACE
ELEMENT WHOSE
CENTER IS CLOSEST
TO STAGN. PT.

'

FORM TABLE OF
X AND ¢ VALUES
ABOVE STAGN. PT.

CALL
LEES

FORM TABLE OF
X AND ¢ VALUES
BELOW STAGN. PT.

CALL
LEES




SHEET B-12 SUBROUTINE LEES FLOW CHART

ENTER

COMPUTE FLOW
PROPERTIES
AFTER NORMAL
SHOCK

4

COMPUTE P (1) X U (1)

AROUND L.E.
P=1+1 USING MODIFIED
NEWTONIAN
X
NO
M 2 1.0
YES
f=1+1

1

COMPUTE P (1) X U (1)
l=14+1 USING PRANDTL -
MEYER EXPANSION

NO IS
| LAST
PT.

YES

INTEGRATE P X U
NUMERICALLY TO
EVALUATE H (1)/Hgp

e
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SHEET B-13 SUBROUTINE DETRAD FLOW CHART

SET UP QUANTITIES
FOR € # 0 & TD PROP.

v

SET TO ZERO

FORCING TERMS IN
TEMPERATURE, DUE TO
€ # 0&TD PROP.

!

SET FLAGS, # OF
SURFACE ELEM. INDEX,
INDECES FOR SPECIAL L.E.

:

PRINT TITLE

y

CALCULATE INITIAL
GUESSES h;j IF NOT

SUPPLIED

v

CALL HETRAC |

SET UP MATRIX A
IN COMPACT FORM

(FOR h;)
MAJOR ITERATION

v

PRINT

FIRST h;

WHICH
ITERATION?

ITERATION

r

CALL EIGVC

INITIAL GUESSES

AFTER

FORE &E'S 1ST by
l ITERATION
CALL IJEN

CALL RVORDER

ORDER
GUESSED E & E'S

OBTAIN
DOMINANT E & E'S

124

MINOR
ITERATION
(FOR Gj;)




SUBROUTINE DETRAD (CONT’D)

COMPUTE
TEMPERATURE
FORCING TERMS
(LOOP 301)

CALL BOX

@&Q

COMPUTE TEMP. ERROR
AT TIMES OF MELT
WITHOUT RAD + TD PROP

CORRECT
RAD. + YES TEMP. ERROR
TD PROP.? FOR RAD. +TD
PROPERTIES
CALL PASS CHECK
BOXES @ @ @ ON TEMPER. AND
h; ERROR?
nTIMES @ ®
PRINT
TEMP. DISTRIB. PERTURB ith h
FOR NEW G;; CALCUL.*
——J FOREACH; *
% CALCULATEG; | CALLBOX @
CALL RIMEQF **
INVERT G:: COMPUTE
GjjMATRIX, e
OBTAIN Ah; i
BOX
® @ ® ® ®
80 81-84 39-90 91-100 101
CALCULATE
STEADY STATE CALCULATE CALCULATE CALCULATE
PICKS MAX FINAL TEMP.
MELT TIME | | TEMP T o VECTOR B = SUM =(T; - T o VM, ERROR FOR
(NO CALCULATION | | VIM%(T; 00 T o ) | | FOR ELEM. Kth ELEM
IF TAW UNIFORM) :

l.e. SPECIAL PROBLEM [

® ONLY FOR STAGNATION POINT
** 1 X1 MATRIX DONE EXPLICITLY WITHOUT RIMEQF
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SHEET B-14 SUBROUTINE IJEN FLOW CHART

CALL BFACS

CHOLEWSKI
DECOMPOSITION

INTO UPPER + LOWER
TRIANGULAR MATRIX

}

INITIALIZE
CONSTANTS

1

CALCULATE

USING SPECIAL
BANDED STRUCTURE OF A

3

SET EIGENVALUES
TO RAYEIGH QUOTIENTS

B!

CALCULATE
EIGENVALUE ERRORS
& DETERMINE MAX ERROR

!

V=A"YV
(FROM BSOLS)

B=VvT av F

{D = DIAG [B])

COMPARE
MAX ERROR
WITH
MAX ALLOWED

LESS THAN

MAX ALLOWED

ALLOWED

126

1

ORTHONORMALIZE
EIGENVECTORS

+
ORDER THEM WITH
RESPECT TO
EIGENVALUES

1

ORDER
EIGENVALUES

T

CORRECT
EIGENVALUES

T

SETBTO
JENNINGS
ITERATION
MATRIX




SHEET B-15 SUBROUTINE EIGVC DESCRIPTION

EIGVC computes guesses of the eigenvalues, eigenvectors and associated permutation index that are necessary to
start the iteration in the Jennings method to calculate eigenvalues and eigenvectors. The formulae used for these
guesses are:

ith eigenvalue R = -i

ith eigenvector A == e+y/(h/2) sin{ 12"- + n% (i - 1)}

> X
y FOR TOP )
HALF
SLAB h
FOR BOTTOM
\Y HALF
~ : -~
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SHEET B-16 SUBROUTINE BFACS DESCRIPTION (SHEET 1 OF 2)

Given a special, L-panded, positive or negative definite symmetric N-th order matrix, S, decompose it into the
product:
s=uTpty

where U is an L-banded nonsingular upper triangular matrix with unit diagonal elements, and D is a nonsingular
diagonal matrix.

The S matrix is inputted as elements of three one-dimensional arrays, A, B, E. The N elements of A are the main
diagonal elements of S, the leading (N—L) elements of E are the L-th super- (and sub-) diagonal elements of S. The

N-1 elements of B are super- {(and sub-) diagonal elements of S. *The trailing L/2 elements of E (optionally) define

main cross diagonal elements of the upper L-th order submatrix of S. In general, later definitions override earlier one,
e.g.if L = 1, B (not E) defines the super diagonal elements of S. In the case for which BFACS is intended, most elements
inside the band are zero. The cross diagonal is installed only if the argument, &, is not zero. The S matrix is topolo-
gically equivalent to conduction paths in a slab (leading edge if a # 0); consider the N = 12, L = 4 example:

4115 ¢9 1 2 3 4 5 6 7 8 9 10 11 12
/ " 5 r
4 B ! | )
NOSE! ( 2 ? 1;0 1 ag by 0 e €1 0 0 0 0 0 0 0
43+7 N1 ,.._;___l
N 4 " i
~N 4t8 ._1'2 2 b-l 32 { 611 | 0 0 62 0 0 0 0 0 0
.=l
Note: b —b8—0 __1.__!
for the condustion 4 | ep' 0 by a3 I@ 0 0 e 0O 0O O O
problem generally
but must be explicitly -~ - = - T —_ T M
made O for BFACS 5]e 0 0 @ % b 0 0 ,e 0 0 0
Note: If nose paths 6 0 ey 0 0 |b5 ag bg 0 o eg 0 0
are included €41, €92 ! ]
are used (o # 0). 7 0 0 eq 0 0 bg a7 by | 0 0 e O

10 0 0 0 0 bg ag bygp O

M |0 o 0 0 0 0 e 0 0 by apq by

12 0 0 o 0 0 0 0 eg 1 0 (o] by aqg

—
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SHEET B-16 SUBROUTINE BFACS DESCRIPTION (SHEET 2 OF 2)

To take advantage of both symmetry and the band form U is stored in a rectangular array of size MID by L,
where MID 2 N; the bottom row is used as scratch storage, STLD VNP and the unused bottom triangle is
zeroed out {for convenience in printing only). U appears as:

STORED ARRAY NON ZERO ELEMENTS OF U MATRIX
1 2 3 4 1 2 3 4 5 6 7 8 9 10 1 12
— —
T ojupp w2 W3 vpg [ Ugq Ugz U3 Upg T
2 | upy upy upz Uy 2 1T upy upy upz Uy
3 |uz1 uzp u3z3z Uz 3 1 uzp ugzy uzz Uz
4 Jugqy ugp ugz ugg 4 T ug Ugp g3 Uy
5 |ugy Ugy Ugz Upg 5 1 ugy ugy ugg ugy
6 |ugr Ug2 U3 Uga 6 1 ugy U2 Ug3 Upg
7 | uzy Uzp uzz uyg 7 1 ugzq Upp U3 upy
8 | ugy ugy ugy ugy 8 1 ugy ugy ugz ugy
9 |ugy ugy ugz O 9 1 ugy ugy Ug3
10 u10'1 u102 0 0 10 1 Y101 u102
1 u11'10 0 0 11 1 Uq11
12 rp T r3 1y 12 1
- — — pu—

The N elements of D'1 are stored in an N-array. For the usual case of S being either positive-or negative-definite,
these elements are all positive or all negative, respectively. However the routine will “work’” provided only that the
leading N principle minors are non-zero. For details see the following article which guarantees high accuracy only for
the definite cases of usuat interest: “Symmetric Decomposition of Positive Definite Band Matrices’, R.S. Martin,
J.H. Wilkinson, C. 1/4, LINEAR ALGEBRA — HANDBOOK FOR AUTOMATIC COMPUTATION, VOLUME 11,
Springer-Verlag, 1971.
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SHEET B-17 SUBROUTINE BSOLS DESCRIPTION

Given the product form decomposition of an L-banded symmetric matrix, S = UTD! U, as calculated by the
BFACS subroutine, BSOLS solves a system of N linear equations with M right hand sides:
S {Y, \ -YM} = { Y, Y- -YM}
The routine sumply carries out the standard forward substitution phase:
z=UTy
followed by the standard backward substitution phase:

x=U'Dz

The only unusual aspect is the rather unorthodox storage scheme which is described in the documentation for
subroutine BFACS. This scheme is necessary to exploit the banded symmetric form of S in the most efficient way
in terms of computer memory. For details see: R.S. Martin, J.H. Wilkinson, “‘Symmetric Decomposition of Positive
Definite Bank Matrices”, in: Linear Algebra—Handbook for Automatic Computation, Volume 11, C. 1/4, Springer-
Verlug, 1971
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SHEET B-18 SUBROUTINE ORNML

Classical Gram-Schmidt orthonormatization of a set of M linearly independent vectorsy,,V;- - -y
inthe order L;, L,, L3, ..., Lm

 EEnEEE— INDEX | FROM 1 TOM

INDEXJFROMITO M

'

~ A=V vl

‘

INDEX 11 FROMITON

'

SETVLy=V¥Ly-2aVL_q
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SHEET B-19 SUBROUTINE HETRAC FLOW CHART

SET=01-LTH

ELEM OF SUPERD’AL
AS REQUIRED BY
BFACS

SET UP LTH SUPERD’AL
ELEMENT IN
A(1J,3)

SET UP 1ST SUPERD’AL
IN A(14,2)

SET UP MAIN DIAG,
IN A(IG, 1)

’

UNUSED SPACE SET
EQUAL TO ZERO

!

SET UP L/2 CROSS-
ELEMENTS CONTAINING
PATHS FORL.EE.a#0
(LOOP 40)
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e ————— = —

SHEET B-20 SUBROUTINE RVORDER

QUANTITY SYMBOL INPUT/QUTPUT
EIGENVALUES R IN +0UT
EIGENVECTORS \ IN +OUT
RANK VECTOR K ouT
PERMUTATION VECTOR L ouT
EIGENVECTOR DIMENSION N IN
NUMBER OF EIGENVECTORS MM IN
DIMENSION OF ARRAY

USED TO STORE EIGENVECTORS MID IN

A A

CALCULATE PERMUTATION
VECTOR TO ORDER
EIGENVECTORS (CALL AORDER}

'

SET RANK
(LOOP 1)

)

(LOOP 3)
INTERCHANGE:
EIGENVALUES,
EIGENVECTORS
RANK,

PERMUTED INDEX

133

DIMENSION

R{MM)
V{(MID, MM}
K(MM)
L(MM)



SHEET B-21 SUBROUTINE AORDER DESCRIPTION

PURPOSE: ORDER A SET OF REAL NUMBERS
CALLING SEQUENCE:
CALL AORDER (A, N, IPERM)

NAME DIMENSION
INPUT A A(N)
N
OuUTPUT IPERM IPERM(N)

AORDER CALLS NO OTHER SUBROUTINES

134

DESCRIPTION

ELEMENTS TO BE ORDERED
NUMBER OF ELEMENTS = | N |
N > 0 INCREASING ORDER

N < 0 DECREASING ORDER

ORDER VECTOR -
SPECIFIES THE SEQUENCE
OF ELEMENT INDEX NUMBERS
WHICH WILL PRESENT
A AS AN ORDERED SET,
ie.
DO1001=1,N

100°WRITE (6,1) A (IPERM(I))

1 FORMAT (F 10.5)

WILL LIST A AS AN ORDERED ARRAY




SHEET B-22 SUBROUTINE DISPLA DESCRIPTION

TITLE: DISPLA — Prints scalars, vectors, rectangular matrices, packed symmetric matrices, and Hessenberg
matrices.

AUTHOR: M. J. Rossi

DATE: September 1973

APPLICABLE COMPUTERS: IBM 360/370; CDC 6000 SERIES
SOURCE LANGUAGE: FORTRAN IV

PURPOSE: To simplify printing of mathematical types of data structures in an easily read format which allows
titles and index labels.

METHOD: FORTRAN iooping and write statements which indexes and addresses arrays according to their type.
USAGE: Call DISPLA (X, NFILE, TITLE, KAR, KIND, NROWS, NCOLS, MID).

X — Input — Array of one or more values to be printed
NFILE — Input — FORTRAN unit for printing.
TITLE  Input - Vegtor of AR charactors vead ac titls,
KAR — Input — Number of characters in above string.
KIND — Input — Type of mathematical data structure:
= O scalar (or vector printed on one line with no index)
=1 vector of INROWS]| elements, indexed
= 2 Rectangular INRQWSI by NCOLS matrix — Dindension (MID, *)
= 3 Packed Symmetric matrix of order INROWS |

12 4
— 12 3 B} - lower triangular partial rows if NROWS positive
4 5 6
12 3
— 12 4 5| - lower triangular partial columns if NROWS negative
356

=4 — Transposed Hessenberg matrix of order NROWS — Dimension (MID, M!D)

NROWS —Input — Number of elements if KIND = 0or 1
— Number of rows if KIND = 2
— Matrix order if KIND =3 or 4

NCOLS — Input — Number of columns if KIND = 2
— Ignored otherwise
MID — Input — Matrix Dimension if KIND =2 or 4

— Ignored otherwise

SUBROUTINE REQUIRED: SWITCH




SHEET B-23 SUBROUTINE LUSOL DESCRIPTION

Given the factorized product form of A=P * L ®* U, LUSOL solves a linear system A x =y. The solution vector is
obtained in two steps: (1) z={L" (PT y)), and then (2) x=U"! z. A good discussion of the details may be found in
the following article: ““Solution of Real and Complex Systems of Linear Equations,” H. J. Bowdler, R. S. Martin,

G. Peters, and J. H. Wilkinson, C. /7, pp. 93-110, Linear Algebra — Handbook for Automatic Computation,

Volume 11, Springer-Verlag, 1971.
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SHEET B-24 SUBROUTINE PART DESCRIPTION

TITLE: PART — Prints standard 120 character labels at the top of the next page.
AUTHOR: M. J. Rossi

DATE: September 1973

APPLICABLE COMPUTERS: IBM 360/370; CDC 6000 SERIES

SOURCE LANGUAGE: FORTRAN IV with 2 Assembler Lar.juage Subordinate Subroutines.

PURPOSE:

METHOD:

USAGE:

To make it convenient to produce standard printed labels with “part’’ numbers, date, and running CPU
time on the top of the next page. Also, prints short line on next line with just CPU time for intermediate

timing.

On the first printing entry for a given computer run the Date Subroutine is invoked and an 8-character
field of an internal word is stored with the date in the form: "KK/LL/MM", where KK is the index
number for the month, LL is the day of the month, and MM is the last 2 digits of the year, e.g.,

March 15, 1973 3/15/73. Also, at this time, the SECOND subroutine is invoked to both
establish the zero time point and to set the units to hundreds of a second. Then the first printed page
heading is given with a zero time and a PART number 1 reported. Subsequent printing calls will give
the time as: NN.H.JJ where NN is the number of minutes elapsed, || is the number of seconds, and

JJ is the number of hundredths of seconds. The PART number is incremented by one for each

printing call. There are two fields of alphameric information for the fuli printing mode which are under
control of the user: (1) The first is a 40 character LABEL field which is set upon calling PART in the
non-printing mode, (2) The second is a 48 character field which is supplied on a full printing call.
There is also a partial printing mode which simply results in the appearance on the next line of an 8
character field of user supplied TITLE along with running CPU time.

Cail PART ('XX.. . X" I
‘XX...X" — Input = Alphameric string of either 8, 40, or 48 characters depending on the value of L.
L — Input — FORTRAN unit for printing, if positive
— If zero, simply sets 40 character LABEL field and returns
— If negative, prints 8 character TITLE — 'XX. . .X’ — and CPU time on next line and
increments PART number.
— If positive, prints DATE, TIME, 40 character LABEL, 48 character TITLE, Part Number
and spacers with standard notation.

SUBROUTINES REQUIRED: DATE, SECOND

137




SHEET B-25 SUBROUTINE RDET DESCRIPTION

Given a square matrix, A, stored in a Fortran double array, decompose it into the product:
A=P*L*U
where P is a permutation matrix, L is lower triangular and U is upper triangular. The algorithm includes implicit row

scaling and partial pivoting while providing a test for singularity of A. For details, see reference given for subroutine
LUSOL.
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SHEET B-26 SUBROUTINE RIMEQF

Solves the system of linear equations, A x = y. The first step involves decomposing A as the product: A=P* L*U
which is done by a call 1o subroutine RDET. This is followed by the standard method of forward substitution and
then backward substitution performed by a call to subroutine LUSOL. This is -4uivalent to solving a pair of
trianguiar systems using L and then U. The total procedure may be viewed as a variant of Gaussian elimination as’
described in more detail in the reference given for subroutine LUSOL.
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SHEET B-27 SUBROUTINE SCAPRO

SCAPRO adds to a quantity the inner product of two vectors X, Y stored as equally spaced words in Fortran arrays.

L
SUM = SUM + b X{UX o (JN)+1) Y (1Y) e (J-1)+1)
J=1

YES ADD £ TO SUM

NO

SCAPRO = SUM  j———o |

!

RETURN
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SHEET B-28 SUBROUTINE SWITCH DESCRIPTION

PROGRAM TITLE: Utility routine for re-arrangement of certain triangular arrays

SUBROUTINE NAME: SWITCH INDEX: 12.6.0.1

ANALYST: F. Nolan

PROGRAMMER: F.Nolan DATE: June 15, 1967
DOCUMENTATION AUTHOR: F. Nolan DATE: June 20, 1973

SOURCE LANGUAGE: FORTRAN IV

APPLICABLE COMPUTERS: IBM Systems 360, 370; CDC 6000 series

REVISION: DATE:

PURPOSE: To provide a convenient conversion between two common arrangements for the storage of triangular

{and symmetric) matrices.

ANALYTIC DESCRIPTION: The routine makes systematic use of transpositions, i.e., interchanges of two array

elements. 1tis a well known result in permutation theory that every permutation can be represented
as a product of transpositions.

PROGRAM DESCRIPTION: There is no loss of generality in assuming that the input matrix is of lower triangular
form. |t is natural to store such matrices by row or by column. Both arrangements are illustrated for

o mateiv af ardar B Tha tndaretandins ic that tha {4 2V alamant fAr avamnla ic accinnad nacitian O
G MGWIR OT OTGCr S. 1 N UNGCTIlanGing ic that the 14,37 cioment, Tor examepele, 1s assigned nocition

using row storage, and position 11 using column storage.

Row Storage Cotumn Storage

1 1

2 3 2 6

4 5 6 3 7 10

7 8 9 10 4 8 11 13

11 12 13 14 15 5 9 12 14 15

Given a lower triangular or symmetric matrix, stored in either fashion, SWITCH can re-arrange it to the
other form. The re-arrangement is carried out "“in place’ in the sense that no auxiliary array is required.
For an input matrix of order m, the transformation is performed in approximately %m? transpositions.
There are no rounding errors.

PROGRAM RESTRICTIONS: The matrix must be of order at least 3.

INPUT PARAMETERS:
FORTRAN Name Description
A Singly-dimensioned real array containing the matrix to be re-arranged.
M Order of matrix A. If M is given positive, conversion is from row to column

storage. f M is given negative, conversion is from column to row storage.

OUTPUT PARAMETERS:

A Matrix in re-arranged order.
CALLING SEQUENCE:

CALL SWITCH (A, M)
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SHEET B-29 SUBROUTINE SCAPR2

SCAPR2 CALCULATES THE INNER
PRODUCT OF TWO VECTORS STORED
AS EQUALLY SPACED WORDS IN FORTRAN ARRAYS,

SumM=0

SCAPR2 = SCAPRO

RETURN

142




SHEET B-30 INPUT DATA LISTING FOR TWO CHECK CASES

000000000111111111122222222223333333333444444444845555555555666666666677777777777
01234567890123456789012345678901234567890123456789012345678901234567890123456789

2 10 9 10 ]
LABEL INFORMATION LE LEES ALPHA®15 CP

-1 o] 0

2 o 1
5400 0.0 660.0 0.0 0e 0 540.0 540.0

10 15.0 15.0

0,001 0.001 0.001 0.001
00,0004 0.0008 040008 0.0008 0e.0012

2 18
04000523 0001570 0,002617 0003664 04004711 0005735 04006735 0,007733
0.,008733 0,000523 0.001570 0.002617 04003664 0004711 0005735 0,006735
04007733 0008733
4455 4475 Se20 $5.80 6edS 720 7672 8400
RelR 4455 4475 S5e20 5.80 6645 7420 7e72
2400 Rel18
Ded 0.001
R0 led 12540 1300.0 5353045 Q.72

4884444455555555556666666666777777777T7/

~

Y

¢

000000000111111111122222222223333333333
123456739012345678901

AV

231.567390‘91/{ G675

444y a
0122456789012345678001234567890122456789

123450/

2 S 12 S

LAYEL INFORMATION SLLAB Two SIDES CP

~1 o] 0

0 0 2
54040 14000 0.0 0.0 0e0 54040 54040
719.5 72940 76740 840,0 91440 992.0 105845 1097 .5
111745 11325 1142,0 114645 69240 700.0 72660 76240
79240 825,0 856,40 87445 88445 8Y2.0 897 40 900.0
0,0032 0.0032 040032 0.0016 040016A 0.0016 0.0016 040008
00008 0.N008 0.,0008 0.0008
0.00025 0.000% 00007 040007 040007 0.0007 00007 040005
0.0002%

2 24
0.0016 0.0048 0.0080 0+.0104 00120 0.,0136 00152 0.0164
O.0172 0.0180 O0e018& 040196 00016 00,0048 040080 040104
0.0120 0.0136 0.0152 0e0164 00172 0.0180 0.0188 040196
3e6 3en 3«5 36 146 3e6 ;:6 3.6
346 3e6 366 3e6 3e6 346 36 3e6
deb 3ebH 3a6 3e6 3e6 346 366 366
0.0 0.001
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